skip to main content


Title: Polarization grating exposure method with easily tunable period via dual rotating polarization grating masks
NSF-PAR ID:
10085672
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
36
Issue:
5
ISSN:
0740-3224; JOBPDE
Page Range / eLocation ID:
Article No. D42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally demonstrate normal-incidence grating couplers designed using topology optimization to couple into multi-core fiber. The insertion loss of the polarizing and polarization demultiplexing gratings was –5.5 dB and –7.7 dB, which is within 0.8 dB of the performance obtained using a fiber array. 
    more » « less
  2. We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM0) input to the fundamental transverse-electric (TE0) mode in the coupler waveguide, while passing the TE0input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband. We rigorously present our design approaches in each section and show the SWG effect by comparing with and without the SWG claddings. The coupling coefficients in each segment explicitly show a stronger coupling effect when the SWGs are included, confirmed by the coupled-mode theory simulations. The full numerical simulation shows that the SWG-PSR operates at 1500–1750 nm (≈250 nm) wavelengths with an extinction ratio larger than 20 dB, confirmed by the experiment for the 1490–1590 nm range. The insertion losses are below 1.3 dB. Since our PSR is designed based on adiabatical mode evolution, the proposed PSR is expected to be tolerant to fabrication variations and should be broadly applicable to polarization management in photonic integrated circuits.

     
    more » « less
  3. Grating coupler devices provide efficient, foundry-compatible vertical fiber-to-chip coupling solutions in integrated photonic platforms. However, standard grating coupler designs are highly polarization sensitive, which hinders their adoption. We present a new, to the best of our knowledge, type of 1D polarization-insensitive grating coupler (PIGC) that is based on a zero-birefringence subwavelength “corelet” waveguide. We demonstrate a PIGC for coupling in the telecommunications O-band in a 45-nm-node monolithic silicon-on-insulator (SOI) CMOS electronic-photonic platform, with measured insertion losses of 6.7 and 6.1 dB to transverse electric and transverse magnetic polarizations, respectively, and a ±1-dB polarization dependent loss bandwidth of 73 nm.

     
    more » « less