skip to main content

Title: Additive manufacturing of patterned 2D semiconductor through recyclable masked growth

The 2D van der Waals crystals have shown great promise as potential future electronic materials due to their atomically thin and smooth nature, highly tailorable electronic structure, and mass production compatibility through chemical synthesis. Electronic devices, such as field effect transistors (FETs), from these materials require patterning and fabrication into desired structures. Specifically, the scale up and future development of “2D”-based electronics will inevitably require large numbers of fabrication steps in the patterning of 2D semiconductors, such as transition metal dichalcogenides (TMDs). This is currently carried out via multiple steps of lithography, etching, and transfer. As 2D devices become more complex (e.g., numerous 2D materials, more layers, specific shapes, etc.), the patterning steps can become economically costly and time consuming. Here, we developed a method to directly synthesize a 2D semiconductor, monolayer molybdenum disulfide (MoS2), in arbitrary patterns on insulating SiO2/Si via seed-promoted chemical vapor deposition (CVD) and substrate engineering. This method shows the potential of using the prepatterned substrates as a master template for the repeated growth of monolayer MoS2patterns. Our technique currently produces arbitrary monolayer MoS2patterns at a spatial resolution of 2 μm with excellent homogeneity and transistor performance (room temperature electron mobility of 30 cm2V−1s−1and on–off current more » ratio of 107). Extending this patterning method to other 2D materials can provide a facile method for the repeatable direct synthesis of 2D materials for future electronics and optoelectronics.

« less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
p. 3437-3442
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Low temperature synthesis of high quality two-dimensional (2D) materials directly on flexible substrates remains a fundamental limitation towards scalable realization of robust flexible electronics possessing the unique physical properties of atomically thin structures. Herein, we describe room temperature sputtering of uniform, stoichiometric amorphous MoS 2 and subsequent large area (>6.25 cm 2 ) photonic crystallization of 5 nm 2H-MoS 2 films in air to enable direct, scalable fabrication of ultrathin 2D photodetectors on stretchable polydimethylsiloxane (PDMS) substrates. The lateral photodetector devices demonstrate an average responsivity of 2.52 μW A −1 and a minimum response time of 120 ms under 515.6 nm illumination. Additionally, the surface wrinkled, or buckled, PDMS substrate with conformal MoS 2 retained the photoconductive behavior at tensile strains as high as 5.72% and over 1000 stretching cycles. The results indicate that the photonic crystallization method provides a significant advancement in incorporating high quality semiconducting 2D materials applied directly on polymer substrates for wearable and flexible electronic systems.
  2. Abstract

    Ion irradiation is a versatile tool to introduce controlled defects into two-dimensional (2D) MoS2on account of its unique spatial resolution and plethora of ion types and energies available. In order to fully realise the potential of this technique, a holistic understanding of ion-induced defect production in 2D MoS2crystals of different thicknesses is mandatory. X-ray photoelectron spectroscopy, electron diffraction and Raman spectroscopy show that thinner MoS2crystals are more susceptible to radiation damage caused by 225 keV Xe+ions. However, the rate of defect production in quadrilayer and bulk crystals is not significantly different under our experimental conditions. The rate at which S atoms are sputtered as a function of radiation exposure is considerably higher for monolayer MoS2, compared to bulk crystals, leading to MoO3formation. P-doping of MoS2is observed and attributed to the acceptor states introduced by vacancies and charge transfer interactions with adsorbed species. Moreover, the out-of-plane vibrational properties of irradiated MoS2crystals are shown to be strongly thickness-dependent: in mono- and bilayer MoS2, the confinement of phonons by defects results in a blueshift of theA1gmode. Whereas, a redshift is observed in bulk crystals due to attenuation of the effective restoring forces acting on S atoms caused by vacanciesmore »in adjacent MoS2layers. Consequently, theA1gfrequency of tri- and quadrilayer crystals is statistically invariant on account oft competition between phonon confinement effects and interlayer interactions. TheA1glinewidth is observed to decrease in bi- and trilayer crystals after low dose irradiation and is attributed to layer decoupling. This work shows that there is a complex interplay between defect production, crystal thickness and interlayer interactions in MoS2. Our results demonstrate that ion irradiation is an effective tool to modulate the electronic, vibrational and structural properties of MoS2, which may prove beneficial for practical applications.

    « less
  3. Abstract

    Here we benchmark device-to-device variation in field-effect transistors (FETs) based on monolayer MoS2and WS2films grown using metal-organic chemical vapor deposition process. Our study involves 230 MoS2FETs and 160 WS2FETs with channel lengths ranging from 5 μm down to 100 nm. We use statistical measures to evaluate key FET performance indicators for benchmarking these two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers against existing literature as well as ultra-thin body Si FETs. Our results show consistent performance of 2D FETs across 1 × 1 cm2chips owing to high quality and uniform growth of these TMDs followed by clean transfer onto device substrates. We are able to demonstrate record high carrier mobility of 33 cm2 V−1 s−1in WS2FETs, which is a 1.5X improvement compared to the best reported in the literature. Our experimental demonstrations confirm the technological viability of 2D FETs in future integrated circuits.

  4. Abstract Chemical vapor deposition (CVD)-grown monolayer (ML) molybdenum disulfide (MoS 2 ) is a promising material for next-generation integrated electronic systems due to its capability of high-throughput synthesis and compatibility with wafer-scale fabrication. Several studies have described the importance of Schottky barriers in analyzing the transport properties and electrical characteristics of MoS 2 field-effect-transistors (FETs) with metal contacts. However, the analysis is typically limited to single devices constructed from exfoliated flakes and should be verified for large-area fabrication methods. In this paper, CVD-grown ML MoS 2 was utilized to fabricate large-area (1 cm × 1 cm) FET arrays. Two different types of metal contacts (i.e. Cr/Au and Ti/Au) were used to analyze the temperature-dependent electrical characteristics of ML MoS 2 FETs and their corresponding Schottky barrier characteristics. Statistical analysis provides new insight about the properties of metal contacts on CVD-grown MoS 2 compared to exfoliated samples. Reduced Schottky barrier heights (SBH) are obtained compared to exfoliated flakes, attributed to a defect-induced enhancement in metallization of CVD-grown samples. Moreover, the dependence of SBH on metal work function indicates a reduction in Fermi level pinning compared to exfoliated flakes, moving towards the Schottky–Mott limit. Optical characterization reveals higher defect concentrations in CVD-grownmore »samples supporting a defect-induced metallization enhancement effect consistent with the electrical SBH experiments.« less
  5. Diamond is a wide-bandgap semiconductor possessing exceptional physical and chemical properties with the potential to miniaturize high-power electronics. Whereas boron-doped diamond (BDD) is a well-known p-type semiconductor, fabrication of practical diamond-based electronic devices awaits development of an effective n-type dopant with satisfactory electrical properties. Here we report the synthesis of n-type diamond, containing boron (B) and oxygen (O) complex defects. We obtain high carrier concentration (∼0.778 × 1021cm−3) several orders of magnitude greater than previously obtained with sulfur or phosphorous, accompanied by high electrical conductivity. In high-pressure high-temperature (HPHT) boron-doped diamond single crystal we formed a boron-rich layer ∼1–1.5 μm thick in the {111} surface containing up to 1.4 atomic % B. We show that under certain HPHT conditions the boron dopants combine with oxygen defects to form B–O complexes that can be tuned by controlling the experimental parameters for diamond crystallization, thus giving rise to n-type conduction. First-principles calculations indicate that B3O and B4O complexes with low formation energies exhibit shallow donor levels, elucidating the mechanism of the n-type semiconducting behavior.