Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme
Abstract The Friedel–Crafts alkylation is commonly used in organic synthesis to form aryl–alkyl C−C linkages. However, this reaction lacks the stereospecificity and regiocontrol of enzymatic catalysis. Here, we describe a stereospecific, biocatalytic Friedel–Crafts alkylation of the 2‐position of resorcinol rings using the cylindrocyclophane biosynthetic enzyme CylK. This regioselectivity is distinct from that of the classical Friedel–Crafts reaction. Numerous secondary alkyl halides are accepted by this enzyme, as are resorcinol rings with a variety of substitution patterns. Finally, we have been able to use this transformation to access novel analogues of the clinical drug candidate benvitimod that are challenging to construct with existing synthetic methods. These findings highlight the promise of enzymatic catalysis for enabling mild and selective C−C bond‐forming synthetic methodology.
more »
« less
- Award ID(s):
- 1454007
- PAR ID:
- 10085884
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 58
- Issue:
- 10
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 3151-3155
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Enzymatic carbon‒carbon (C–C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C–C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita–Baylis–Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C–C bond formation, C–C bond formation through C1 resource utilization, radical enzymes for C–C bond formation, and other C–C bond formation reactions.more » « less
-
Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert -butylation of electron-rich arenes using di- tert -butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel–Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel–Crafts reactivity.more » « less
-
The efficient and modular diversification of molecular scaffolds, particularly for the synthesis of diverse molecular libraries, remains a significant challenge in drug optimization campaigns. The late-stage introduction of alkyl fragments is especially desirable due to the high sp³-character and structural versatility of these motifs. Given their prevalence in molecular frameworks, C(sp²)−H bonds serve as attractive targets for diversification, though this process often requires difficult pre-functionalization or lengthy de novo syntheses. Traditionally, direct alkylations of arenes are achieved by employing Friedel–Crafts reaction conditions using strong Brønsted or Lewis acids. However, these methods suffer from poor functional group tolerance and low selectivity, limiting their broad implementation in late-stage functionalization and drug optimization campaigns. Herein, we report the application of a novel strategy for the selective coupling of differently hybridized radical species, which we term dynamic orbital selection. This mechanistic paradigm overcomes common limitations of Friedel-Crafts alkylations via the in situ formation of two distinct radical species, which are subsequently differentiated by a copper-based catalyst based on their respective binding properties. As a result, we demonstrate herein a general and highly modular reaction for the direct alkylation of native arene C−H bonds using abundant and benign alcohols and carboxylic acids as the alkylating agents. Ultimately, this solution overcomes the synthetic challenges associated with the introduction of complex alkyl scaffolds into highly sophisticated drug scaffolds in a late-stage fashion, thereby granting access to vast new chemical space. Based on the generality of the underlying coupling mechanism, dynamic orbital selection is expected to be a broadly applicable coupling platform for further challenging transformations involving two distinct radical species.more » « less
-
Abstract Friedel-Crafts Arylation (the Scholl reaction) is the coupling of two aromatic rings with the aid of a strong Lewis or Brønsted acid. This historically significant C–C bond forming reaction normally leads to aromatic products, often as oligomeric mixtures, dictated by the large stabilization gained upon their rearomatization. The coordination of benzene by a tungsten complex disrupts the natural course of this reaction sequence, allowing for Friedel-Crafts Arylation without rearomatization or oligomerization. Subsequent addition of a nucleophile to the coupled intermediate leads to functionalized cyclohexenes. In this work, we show that by coordinating benzene to tungsten through two carbons (dihapto-coordinate), a rarely observed double protonation of the bound benzene is enabled, allowing its subsequent coupling to a second arene without the need of a precious metal or Lewis acid catalyst.more » « less
An official website of the United States government
