skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reductive Disproportionation of CO 2 Mediated by Bimetallic Nickelate(-I)/Group 13 Complexes: Reductive Disproportionation of CO 2 Mediated by Bimetallic Nickelate(-I)/Group 13 Complexes
Award ID(s):
1665010 1229400
PAR ID:
10085945
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2019
Issue:
15
ISSN:
1434-1948
Page Range / eLocation ID:
p. 2140-2145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Formal nickelate(−I) complexes bearing Group 13 metalloligands (M=Al and Ga) were isolated. These 17 ecomplexes were synthesized by one‐electron reduction of the corresponding Ni0→MIIIprecursors, and were investigated by single‐crystal X‐ray diffraction, EPR spectroscopy, and quantum chemical calculations. Collectively, the experimental and computational data support: 1) the strengthening of the Ni−M bond upon one‐electron reduction, and 2) the delocalization of the unpaired spin across the Ni and M atoms. An intriguing electronic configuration is revealed where three valence electrons occupy two σ‐type bonding interactions: Ni(3d)2→M and σ‐(Ni−M)1. The latter is an unusual Ni−M σ‐bonding molecular orbital that comprises primarily the Ni 4pzand M npz/ns atomic orbitals. 
    more » « less
  2. Understanding H 2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H 2 with protons and electrons. This work reports the first thermodynamic and kinetic H 2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al ( 1 ), Ga ( 2 ), and In ( 3 ), and L = [N( o -(NCH 2 P i Pr 2 )C 6 H 4 ) 3 ] 3− . Thermodynamic free energies (Δ G °) and free energies of activation (Δ G ‡ ) for binding equilibria were obtained via variable-temperature 31 P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H 2 and N 2 binding to Ni, with Δ G ° values for H 2 binding found to span nearly the entire range of previous reports. The non-classical H 2 adduct, (η 2 -H 2 )NiInL ( 3 -H 2 ), was structurally characterized by single-crystal neutron diffraction—the first such study for a Ni(η 2 -H 2 ) complex or any d 10 M(η 2 -H 2 ) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H 2 binding primarily occurs via H–H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M( iii ) dative interaction increases for the larger M( iii ) ions. Linear free-energy relationships are discussed, with the activation barrier for H 2 binding (Δ G ‡ ) found to decrease proportionally for more thermodynamically favorable equilibria. The Δ G ° values for H 2 and N 2 binding to NiML complexes were also found to be more exergonic for the larger M( iii ) ions. 
    more » « less
  3. Abstract The incorporation of CO2into organometallic and organic molecules represents a sustainable way to prepare carboxylates. The mechanism of reductive carboxylation of alkyl halides has been proposed to proceed through the reduction of NiIIto NiIby either Zn or Mn, followed by CO2insertion into NiI‐alkyl species. No experimental evidence has been previously established to support the two proposed steps. Demonstrated herein is that the direct reduction of (tBu‐Xantphos)NiIIBr2by Zn affords NiIspecies. (tBu‐Xantphos)NiI‐Me and (tBu‐Xantphos)NiI‐Et complexes undergo fast insertion of CO2at 22 °C. The substantially faster rate, relative to that of NiIIcomplexes, serves as the long‐sought‐after experimental support for the proposed mechanisms of Ni‐catalyzed carboxylation reactions. 
    more » « less