skip to main content


Title: UV-irradiation of self-assembled triphenylamines affords persistent and regenerable radicals
UV-irradiation of assembled urea-tethered triphenylamine dimers results in the formation of persistent radicals, whereas radicals generated in solution are reactive and quickly degrade. In the solid-state, high quantities of radicals (approximately 1 in 150 molecules) are formed with a half-life of one week with no significant change in the single crystal X-ray diffraction. Remarkably, after decay, re-irradiation of the solid sample regenerates the radicals to their original concentration. The photophysics upon radical generation are also altered. Both the absorption and emission are significantly quenched without external oxidation likely due to the delocalization of the radicals within the crystals. The factors that influence radical stability and generation are correlated to the rigid supramolecular framework formed by the urea tether of the triphenylamine dimer. Electrochemical evidence demonstrates that these compounds can be oxidized in solution at 1.0 V vs. SCE to generate radical cations, whose EPR spectra were compared with spectra of the solid-state photogenerated radicals. Additionally, these compounds display changes in emission due to solvent effects from fluorescence to phosphorescence. Understanding how solid-state assembly alters the photophysical properties of triphenylamines could lead to further applications of these compounds for magnetic and conductive materials.  more » « less
Award ID(s):
1655740
NSF-PAR ID:
10086204
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 −7 S cm −1 ) compared to 1 (1.6 × 10 −8 S cm −1 ). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5–1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 −6 S cm −1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells. 
    more » « less
  2. Hongwei Wu (Ed.)
    Pyrolytic lignin is a fraction of pyrolysis oil that contains a wide range of phenolic compounds that can be used as intermediates to produce fuels and chemicals. However, the characteristics of the raw lignin structure make it difficult to establish a pyrolysis mechanism and determine pyrolytic lignin structures. This study proposes dimer, trimer, and tetramer structures based on their relative thermodynamic stability for a hardwood lignin model in pyrolysis. Different configurations of oligomers were evaluated by varying the positions of the guaiacyl (G) and syringyl (S) units and the bonds βO4 and β5 in the hardwood model lignin through electronic structure calculations. The homolytic cleavage of βO4 bonds is assumed to occur and generate two free radical fragments. These can stabilize by taking hydrogen radicals that may be in solution during the intermediate liquid (pathway 1) formation before the thermal ejection. An alternative pathway (pathway 2) could occur when the radicals use intramolecular hydrogen, turning themselves into stable products. Subsequently, a demethylation reaction can take place, thus generating a methane molecule and new oligomeric lignin-derived molecules. The most probable resulting structures were studied. We used FTIR and NMR spectra of selected model compounds to evaluate our calculation approach. Thermophysical properties were calculated using group contribution methods. The results give insights into the lignin oligomer structures and how these molecules are formed. They also provide helpful information for the design of pyrolysis oil separation and upgrading equipment. 
    more » « less
  3. ABSTRACT: We report the generation and spectroscopic study of hydrogen-rich DNA tetranucleotide cation radicals (GATC+2H)+• and (AGTC+2H)+•. The radicals were generated in the gas phase by one-electron reduction of the respective dications (GATC +2H)2+ and (AGTC+2H)2+ and characterized by collision-induced dissociation and photodissociation tandem mass spectrometry and UV−vis photodissociation action spectroscopy. Among several absorption bands observed for (GATC+2H)+•, the bands at 340 and 450 nm were assigned to radical chromophores. Timedependent density functional theory calculations including vibronic transitions in the visible region of the spectrum were used to provide theoretical absorption spectra of several low-energy tetranucleotide tautomers having cytosine-, adenine-, and thymine- based radical chromophores that did not match the experimental spectrum. Instead, the calculations indicated the formation of a new isomer with the 7,8-H-dihydroguanine cation radical moiety. The isomerization involved hydrogen migration from the cytosine N-3−H radical to the C-8 position in N-7-protonated guanine that was calculated to be 87 kJ mol−1 exothermic and had a low-energy transition state. Although the hydrogen migration was facilitated by the spatial proximity of the guanine and cytosine bases in the low-energy (GATC+2H)+• intermediate formed by electron transfer, the reaction was calculated to have a large negative activation entropy. Rice−Ramsperger−Kassel−Marcus (RRKM) and transition state theory kinetic analysis indicated that the isomerization occurred rapidly in hot cation radicals produced by electron transfer with the population-weighed rate constant of k = 8.9 × 103 s−1. The isomerization was calculated to be too slow to proceed on the experimental time scale in thermal cation radicals at 310 K. 
    more » « less
  4. The sulfate anion radical (SO 4 •– ) is known to be formed in the autoxidation chain of sulfur dioxide and from minor reactions when sulfate or bisulfate ions are activated by OH radicals, NO 3 radicals, or iron. Here, we report a source of SO 4 •– , from the irradiation of the liquid water of sulfate-containing organic aerosol particles under natural sunlight and laboratory UV radiation. Irradiation of aqueous sulfate mixed with a variety of atmospherically relevant organic compounds degrades the organics well within the typical lifetime of aerosols in the atmosphere. Products of the SO 4 •– + organic reaction include surface-active organosulfates and small organic acids, alongside other products. Scavenging and deoxygenated experiments indicate that SO 4 •– radicals, instead of OH, drive the reaction. Ion substitution experiments confirm that sulfate ions are necessary for organic reactivity, while the cation identity is of low importance. The reaction proceeds at pH 1–6, implicating both bisulfate and sulfate in the formation of photoinduced SO 4 •– . Certain aromatic species may further accelerate the reaction through synergy. This reaction may impact our understanding of atmospheric sulfur reactions, aerosol properties, and organic aerosol lifetimes when inserted into aqueous chemistry model mechanisms. 
    more » « less
  5. Abstract. Oxygenated organic molecules (OOMs) are the crucial intermediates linkingvolatile organic compounds (VOCs) to secondary organic aerosols (SOAs) in theatmosphere, but comprehensive understanding of the characteristics of OOMsand their formation from VOCs is still missing. Ambient observations ofOOMs using recently developed mass spectrometry techniques are stilllimited, especially in polluted urban atmospheres where VOCs and oxidants areextremely variable and complex. Here, we investigate OOMs, measured by anitrate-ion-based chemical ionization mass spectrometer at Nanjing ineastern China, through performing positive matrix factorization on binnedmass spectra (binPMF). The binPMF analysis reveals three factors aboutanthropogenic VOC (AVOC) daytime chemistry, three isoprene-relatedfactors, three factors about biogenic VOC (BVOC) nighttime chemistry, andthree factors about nitrated phenols. All factors are influenced by NOxin different ways and to different extents. Over 1000 non-nitro moleculeshave been identified and then reconstructed from the selected solution ofbinPMF, and about 72 % of the total signals are contributed bynitrogen-containing OOMs, mostly regarded as organic nitrates formed throughperoxy radicals terminated by nitric oxide or nitrate-radical-initiatedoxidations. Moreover, multi-nitrates account for about 24 % of the totalsignals, indicating the significant presence of multiple generations,especially for isoprene (e.g., C5H10O8N2 andC5H9O10N3). Additionally, the distribution of OOMconcentration on the carbon number confirms their precursors are driven by AVOCsmixed with enhanced BVOCs during summer. Our results highlight the decisiverole of NOx in OOM formation in densely populated areas, and we encouragemore studies on the dramatic interactions between anthropogenic and biogenicemissions. 
    more » « less