skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlling deformations of gel-based composites by electromagnetic signals within the GHz frequency range
Using theoretical and computational modeling, we focus on dynamics of gels filled with uniformly dispersed ferromagnetic nanoparticles subjected to electromagnetic (EM) irradiation within the GHz frequency range. As a polymer matrix, we choose poly( N -isopropylacrylamide) gel, which has a low critical solution temperature and shrinks upon heating. When these composites are irradiated with a frequency close to the Ferro-Magnetic Resonance (FMR) frequency, the heating rate increases dramatically. The energy dissipation of EM signals within the magnetic nanoparticles results in the heating of the gel matrix. We show that the EM signal causes volume phase transitions, leading to large deformations of the sample for a range of system parameters. We propose a model that accounts for the dynamic coupling between the elastodynamics of the polymer gel and the FMR heating of magnetic nanoparticles. This coupling is nonlinear: when the system is heated, the gel shrinks during the volume phase transition, and the particle concentration increases, which in turn results in an increase of the heating rates as long as the concentration of nanoparticles does not exceed a critical value. We show that the system exhibits high selectivity to the frequency of the incident EM signal and can result in a large mechanical feedback in response to a small change in the applied signal. These results suggest the design of a new class of soft active gel-based materials remotely controlled by low power EM signals within the GHz frequency range.  more » « less
Award ID(s):
1655740
PAR ID:
10086206
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
43
ISSN:
1744-683X
Page Range / eLocation ID:
8698 to 8708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a composite of barium ferrite (BaM) and multiwalled carbon nanotubes (CNTs) in a polymer matrix of polydimethylsiloxane (PDMS) are reported for the purpose of suppressing electromagnetic interference (EMI). Shielding is accomplished primarily through absorption, which arises from a combination of the ferromagnetic resonance (FMR) from the BaM and conductive losses from the CNTs. The composite is fabricated by mixing commercially available BaM nanoparticles and CNTs into PDMS, screen printing the mixture into molds, then curing at 80 °C in a DC magnetic field. Characterization involves placing the composite in the cross‐section of a rectangular waveguide, then using a vector network analyzer (VNA) to measure scattering (S) parameters from 33–50 GHz. Using the measured S parameters, power reflected and absorbed can be calculated and used to characterize the composite's shielding effectiveness (SE), and the complex permittivity and permeability can be determined. The resulting 2.4 mm thick composite shows a peak absorption of 26.9 dB at the FMR frequency of 47.4 GHz. When normalized for thickness, the composite, on average, absorbs 11.3 dB mm−1and operates at a higher frequency than other shielding composites found in the literature. 
    more » « less
  2. Abstract This report is on the observation and analysis of nonlinear magnetoelectric effects (NLME) for in-plane currents perpendicularly to the hexagonal axis in single crystals and liquid phase epitaxy grown thin films of barium hexaferrite. Measurements involved tuning of ferromagnetic resonance (FMR) at 56–58 GHz in the multidomain and single domain states in the ferrite by applying a current. Data on the shift in the resonance frequency with input electric power was utilized to estimate the variations in the magnetic parameter that showed a linear dependence on the input electric power. The NLME tensor coefficients were determined form the estimated changes in the magnetization and uniaxial anisotropy field. The estimated NLME coefficients for in-plane currents are shown to be much higher than for currents flowing along the hexagonal axis. Although the frequency shift of FMR was higher for the single domain resonance, the multi-domain configuration is preferable for device applications since it eliminates the need for a large bias magnetic field. Thus, multidomain resonance with current in the basal plane is favorable for use in electrically tunable miniature, ferrite microwave signal processing devices requiring low operating power. 
    more » « less
  3. This report is on experiments and theory on the process of optically stimulated electron population density redistribution in Si-substituted yttrium-iron garnet single crystals at 77 K. It was determined that a photo-induced uniaxial anisotropy field arose in the YIG:Si sample in response to illumination by quasi-linearly polarized laser (λ = 808 nm) leading to redistribution of Fe2+ ions among the nonequivalent octahedral sites. The photo-induced field was measured by variation of ferromagnetic resonance (FMR) frequencies in the X-band. The measured FMR frequency shift demonstrated a pronounced dependence on the polarization vector orientation with respect to crystallographic axes, in accordance with the theory discussed here. The frequency shift dependence on light intensity (for optimal polarization orientation) was found to be nearly linear, at least within the output intensity range of the optical source. The maximum frequency shift was −130 MHz for 75 mW applied optical power. A similar phenomenon was also observed at room temperature but was attributed to the sample heating by the incident light. The results presented here demonstrate the potential of the phenomenon for application in the development of ferrite signal processing devices with dual tuning by both magnetic field and optical irradiation. 
    more » « less
  4. Abstract Highly effective electromagnetic (EM) wave absorber materials with strong reflection loss (RL) and a wide absorption bandwidth (EBW) in gigahertz (GHz) frequencies are crucial for advanced wireless applications and portable electronics. Traditional microwave absorbers lack magnetic loss and struggle with impedance matching, while ferrites are stable, exhibit excellent magnetic and dielectric losses, and offer better impedance matching. However, achieving the desired EBW in ferrites remains a challenge, necessitating further composition design. In this study, impedance matching is successfully enhanced and EBW in Ni–Zn ferrite is broadened by successive doping with Mn and Co , without incorporation of any polymer filler. It is found that Ni0.4Co0.1Zn0.5Fe1.9Mn0.1O4material exhibits exceptional EM wave absorption, with a maximum RL of −48.7 dB. It also featured a significant EBW of 10.8 GHz, maintaining a 90% absorption rate (RL < −10 dB) for a thickness of 4.5 mm. These outstanding properties result from substantial magnetic losses and favorable impedance matching. These findings represent a significant step forward in the development of microwave absorber materials, addressing EM wave pollution concerns within GHz frequencies, including the frequency band used in popular 5G technology. 
    more » « less
  5. Ionic liquid mixed with poly(methyl methacrylate)-grafted nanoparticle aggregates at low particle concentrations was shown to exhibit different dynamics and ionic conductivity than that of pure ionic liquid in our previous studies. In this work, we report on the quasi-elastic neutron scattering results on ionic liquid containing polymer-grafted nanoparticles at the higher particle concentration. The diffusivity of imidazolium (HMIM + ) cations of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI) in the presence of poly(methyl methacrylate)-grafted iron oxide nanoparticles and the ionic conductivity of solutions were discussed through the confinement. Analysis of the elastic incoherent structure factor suggested the confinement radius decreased with the addition of grafted particles in HMIM-TFSI/solvent mixture, indicating the confinement that is induced by the high concentration of grafted particles, shrinks the HMIM-TFSI restricted volume. We further conjecture that this enhanced diffusivity occurs as a result of the local ordering of cations within aggregates of poly(methyl methacrylate)-grafted particles. 
    more » « less