Switch defective/sucrose non‐fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi‐subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)‐containing SWI/SNF complexes in plants. Here, we show that the
Floral development is one of the model systems for investigating the mechanisms underlying organogenesis in plants. Floral organ identity is controlled by the well-known ABC model, which has been generalized to many flowering plants. Here, we report a previously uncharacterized MYB-like gene,
- PAR ID:
- 10086257
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 11
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 5176-5181
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
SUMMARY Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD‐containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD,in vitro andin vivo . Phenotypic analyses oflfr‐2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co‐regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription ofAGAMOUS (AG ), a C‐class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on theAG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop atAG locus is negatively correlated with theAG expression level, and LFR‐SYD was functional to demolish theAG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD‐SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development. -
Abstract The regulation of floral organ identity was investigated using a forward genetic approach in five floral homeotic mutants of
Thalictrum , a noncore eudicot. We hypothesized that these mutants carry defects in the floral patterning genes. Mutant characterization comprised comparative floral morphology and organ identity gene expression at early and late developmental stages, followed by sequence analysis of coding and intronic regions to identify transcription factor binding sites and protein–protein interaction (PPI) motifs. Mutants exhibited altered expression of floral MADS‐box genes, which further informed the function of paralogs arising from gene duplications not found in reference model systems. The ensuing modified BCE models for the mutants supported instances of neofunctionalization (e.g., B‐class genes expressed ectopically in sepals), partial redundancy (E‐class), or subfunctionalization (C‐class) of paralogs. A lack of deleterious mutations in the coding regions of candidate floral MADS‐box genes suggested thatcis ‐regulatory ortrans ‐acting mutations are at play. Consistent with this hypothesis, double‐flower mutants had transposon insertions or showed signs of transposon activity in the regulatory intron ofAGAMOUS (AG ) orthologs. Single amino acid substitutions were also found, yet they did not fall on any of the identified DNA binding or PPI motifs. In conclusion, we present evidence suggesting that transposon activity and regulatory mutations in floral homeotic genes likely underlie the striking phenotypes of theseThalictrum floral homeotic mutants. -
A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3).more » « less
-
Organ initiation from the shoot apical meristem first gives rise to leaves during vegetative development and then flowers during reproductive development.
LEAFY (LFY ) is activated after floral induction and together with other factors promotes the floral program. LFY functions redundantly with APETALA1 (AP1) to activate the class B genesAPETALA3 (AP3 ) andPISTILLATA (PI ), the class C geneAGAMOUS (AG ), and the class E geneSEPALLATA3 , which leads to the specification of stamens and carpels, the reproductive organs of flowers. Molecular and genetic networks that control the activation ofAP3, PI, andAG in flowers have been well studied; however, much less is known about how these genes are repressed in leaves and how their repression is lifted in flowers. Here, we showed that two genes encodingArabidopsis C2H2 ZINC FINGER PROTEIN (ZFP) transcription factors, ZP1 and ZFP8, act redundantly to directly repressAP3, PI, andAG in leaves. AfterLFY andAP1 are activated in floral meristems, they down-regulateZP1 andZFP8 directly to lift the repression onAP3, PI, andAG . Our results reveal a mechanism for how floral homeotic genes are repressed and derepressed before and after floral induction. -
Summary Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. In
Arabidopsis thaliana , vernalization leads to the stable repression of the floral repressor via chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (FLOWERING LOCUS CPRC 2). Vernalization in pooids is associated with the stable induction of a floral promoter, (VERNALIZATION 1VRN1 ). From a screen for mutants with a reduced vernalization requirement in the model grassBrachypodium distachyon , we identified two recessive alleles of (ENHANCER OF ZESTE ‐LIKE 1 ).EZL 1 is orthologous toEZL 1A. thaliana , a gene that encodes the catalytic subunit ofCURLY LEAF 1PRC 2.B. distachyon ezl1 mutants flower rapidly without vernalization in long‐day (LD ) photoperiods; thus, is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies inEZL 1ezl1 revealed mis‐regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss of results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution toEZL 1PRC 2 activity inB. distachyon . Furthermore, inezl1 mutants, the flowering genes andVRN 1 (AGAMOUS ) are ectopically expressed and have reduced H3K27me3. Artificial microAG RNA knock‐down of either orVRN 1 inAG ezl1‐1 mutants partially restores wild‐type flowering behavior in non‐vernalized plants, suggesting that ectopic expression inezl1 mutants may contribute to the rapid‐flowering phenotype.