skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Priv'IT: Private and Sample Efficient Identity Testing.
We develop differentially private hypothesis testing methods for the small sample regime. Given a sample  from a categorical distribution p over some domain Σ, an explicitly described distribution q over Σ, some privacy parameter ε, accuracy parameter α, and requirements βI and βII for the type I and type II errors of our test, the goal is to distinguish between p=q and dTV(p,q)≥α. We provide theoretical bounds for the sample size || so that our method both satisfies (ε,0)-differential privacy, and guarantees βI and βII type I and type II errors. We show that differential privacy may come for free in some regimes of parameters, and we always beat the sample complexity resulting from running the χ2-test with noisy counts, or standard approaches such as repetition for endowing non-private χ2-style statistics with differential privacy guarantees. We experimentally compare the sample complexity of our method to that of recently proposed methods for private hypothesis testing.  more » « less
Award ID(s):
1650733
PAR ID:
10086308
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
34th International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide improved differentially private algorithms for identity testing of high-dimensional distributions. Specifically, for d-dimensional Gaussian distributions with known covariance Σ, we can test whether the distribution comes from N(μ∗,Σ) for some fixed μ∗ or from some N(μ,Σ) with total variation distance at least α from N(μ∗,Σ) with (ε,0)-differential privacy, using only O~(d1/2α2+d1/3α4/3⋅ε2/3+1α⋅ε) samples if the algorithm is allowed to be computationally inefficient, and only O~(d1/2α2+d1/4α⋅ε) samples for a computationally efficient algorithm. We also provide a matching lower bound showing that our computationally inefficient algorithm has optimal sample complexity. We also extend our algorithms to various related problems, including mean testing of Gaussians with bounded but unknown covariance, uniformity testing of product distributions over {−1,1}d, and tolerant testing. Our results improve over the previous best work of Canonne et al.~\cite{CanonneKMUZ20} for both computationally efficient and inefficient algorithms, and even our computationally efficient algorithm matches the optimal \emph{non-private} sample complexity of O(d√α2) in many standard parameter settings. In addition, our results show that, surprisingly, private identity testing of d-dimensional Gaussians can be done with fewer samples than private identity testing of discrete distributions over a domain of size d \cite{AcharyaSZ18}, which refutes a conjectured lower bound of~\cite{CanonneKMUZ20}. 
    more » « less
  2. We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under (epsilon, delta)-differential privacy. We provide sample optimal algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most k. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on di erentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By carefully constructing chosen priors over the hypothesis classes, and using Le Cam’s two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy. 
    more » « less
  3. We study the fundamental problems of identity and equivalence testing over a discrete populationfrom random samples. Our goal is to develop efficient testers while guaranteeingdifferential privacy to the individuals of the population. We provide sample-efficient differentially private testers for these problems.Our theoretical results significantly improve over the best known algorithms for identity testing, and are the first results for private equivalence testing. The conceptual message of our work is thatthere exist private hypothesis testers that are nearly as sample-efficient as their non-private counterparts. We perform an experimental evaluation of our algorithms on synthetic data. Our experiments illustrate that our private testers achieve small type I and type II errors with sample size sublinear in the domain size of the underlying distributions. 
    more » « less
  4. We develop a non-asymptotic framework for hypothesis testing in nonparametric regression where the true regression function belongs to a Sobolev space. Our statistical guarantees are exact in thesense that Type I and II errors are controlled for any finite sample size. Meanwhile, one proposed test is shown to achieve minimax rate optimality in the asymptotic sense. An important consequence of this non-asymptotic theory is a new and practically useful formula for selecting the optimal smoothing parameter in the testing statistic. Extensions of our results to general reproducing kernel Hilbert spaces and non-Gaussian error regression are also discussed. 
    more » « less
  5. We extend the framework of augmented distribution testing (Aliakbarpour, Indyk, Rubinfeld, and Silwal, NeurIPS 2024) to the differentially private setting. This captures scenarios where a data ana- lyst must perform hypothesis testing tasks on sensitive data, but is able to leverage prior knowledge (public, but possibly erroneous or untrusted) about the data distribution. We design private algorithms in this augmented setting for three flagship distribution testing tasks, uniformity, identity, and closeness testing, whose sample complexity smoothly scales with the claimed quality of the auxiliary information. We complement our algorithms with information- theoretic lower bounds, showing that their sample complexity is optimal (up to logarithmic factors). Keywords: distribution testing, identity testing, closeness testing, differential privacy, learning- augmented algorithms 
    more » « less