Asynchronous Gibbs sampling has been recently shown to be fastmixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the truemore »
HOGWILD!Gibbs can be PanAccurate
Asynchronous Gibbs sampling has been recently shown to be fastmixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the true more »
 Award ID(s):
 1650733
 Publication Date:
 NSFPAR ID:
 10086312
 Journal Name:
 32nd Annual Conference on Neural Information Processing Systems
 Sponsoring Org:
 National Science Foundation
More Like this


The seminal result of Kahn, Kalai and Linial shows that a coalition of O(n/(log n)) players can bias the outcome of any Boolean function {0,1}^n > {0,1} with respect to the uniform measure. We extend their result to arbitrary product measures on {0,1}^n, by combining their argument with a completely different argument that handles very biased input bits. We view this result as a step towards proving a conjecture of Friedgut, which states that Boolean functions on the continuous cube [0,1]^n (or, equivalently, on {1,...,n}^n) can be biased using coalitions of o(n) players. This is the first step taken in this direction since Friedgut proposed the conjecture in 2004. Russell, Saks and Zuckerman extended the result of Kahn, Kalai and Linial to multiround protocols, showing that when the number of rounds is o(log^* n), a coalition of o(n) players can bias the outcome with respect to the uniform measure. We extend this result as well to arbitrary product measures on {0,1}^n. The argument of Russell et al. relies on the fact that a coalition of o(n) players can boost the expectation of any Boolean function from epsilon to 1epsilon with respect to the uniform measure. This fails for general productmore »

Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and blocktridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistorcapacitorinductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to socalled nitedierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM statespace representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from themore »

The noise sensitivity of a Boolean function f: {0,1}^n  > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noisesensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone functionmore »

Abstract Hardtopredict bursts of COVID19 pandemic revealed significance of statistical modeling which would resolve spatiotemporal correlations over geographical areas, for example spread of the infection over a city with census tract granularity. In this manuscript, we provide algorithmic answers to the following two interrelated public health challenges of immense social impact which have not been adequately addressed (1) Inference Challenge assuming that there are N census blocks (nodes) in the city, and given an initial infection at any set of nodes, e.g. any N of possible single node infections, any $$N(N1)/2$$ N ( N  1 ) / 2 of possible two node infections, etc, what is the probability for a subset of census blocks to become infected by the time the spread of the infection burst is stabilized? (2) Prevention Challenge What is the minimal control action one can take to minimize the infected part of the stabilized state footprint? To answer the challenges, we build a Graphical Model of pandemic of the attractive Ising (pairwise, binary) type, where each node represents a census tract and each edge factor represents the strength of the pairwise interaction between a pair of nodes, e.g. representing the internode travel, road closure andmore »