Banach's fixed point theorem for contraction maps has been widely used to analyze the convergence of iterative methods in non-convex problems. It is a common experience, however, that iterative maps fail to be globally contracting under the natural metric in their domain, making the applicability of Banach's theorem limited. We explore how generally we can apply Banach's fixed point theorem to establish the convergence of iterative methods when pairing it with carefully designed metrics. Our first result is a strong converse of Banach's theorem, showing that it is a universal analysis tool for establishing global convergence of iterative methods to unique fixed points, and for bounding their convergence rate. In other words, we show that, whenever an iterative map globally converges to a unique fixed point, there exists a metric under which the iterative map is contracting and which can be used to bound the number of iterations until convergence. We illustrate our approach in the widely used power method, providing a new way of bounding its convergence rate through contraction arguments.
We next consider the computational complexity of Banach's fixed point theorem. Making the proof of our converse theorem constructive, we show that computing a fixed point whose existence is guaranteed by Banach's fixed point theorem is CLS-complete. We thus provide the first natural complete problem for the class CLS, which was defined in [DP11] to capture the complexity of problems such as P-matrix LCP, computing KKT-points, and finding mixed Nash equilibria in congestion and network coordination games.
more »
« less
A Converse to Banach's Fixed Point Theorem and its CLS Completeness
Banach's fixed point theorem for contraction maps has been widely used to analyze the convergence of iterative methods in non-convex problems. It is a common experience, however, that iterative maps fail to be globally contracting under the natural metric in their domain, making the applicability of Banach's theorem limited. We explore how generally we can apply Banach's fixed point theorem to establish the convergence of iterative methods when pairing it with carefully designed metrics.
Our first result is a strong converse of Banach's theorem, showing that it is a universal analysis tool for establishing global convergence of iterative methods to unique fixed points, and for bounding their convergence rate. In other words, we show that, whenever an iterative map globally converges to a unique fixed point, there exists a metric under which the iterative map is contracting and which can be used to bound the number of iterations until convergence. We illustrate our approach in the widely used power method, providing a new way of bounding its convergence rate through contraction arguments.
We next consider the computational complexity of Banach's fixed point theorem. Making the proof of our converse theorem constructive, we show that computing a fixed point whose existence is guaranteed by Banach's fixed point theorem is CLS-complete. We thus provide the first natural complete problem for the class CLS, which was defined in [Daskalakis, Papadimitriou 2011] to capture the complexity of problems such as P-matrix LCP, computing KKT-points, and finding mixed Nash equilibria in congestion and network coordination games.
more »
« less
- Award ID(s):
- 1650733
- PAR ID:
- 10086320
- Date Published:
- Journal Name:
- 50th Annual ACM Symposium on the Theory of Computing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We collect from several sources some of the most important results on the forward and backward limits of points under real and complex rational functions, and in particular real and complex Newton maps, in one variable and we provide numerical evidence that the dynamics of Newton maps [Formula: see text] associated to real polynomial maps [Formula: see text] with no complex roots has a complexity comparable with that of complex Newton maps in one variable. In particular such a map [Formula: see text] has no wandering domain, almost every point under [Formula: see text] is asymptotic to a fixed point and there is some non-empty open set of points whose [Formula: see text]-limit equals the set of non-regular points of the Julia set of [Formula: see text]. The first two points were proved by B. Barna in the real one-dimensional case.more » « less
-
Abstract Solving linear systems, often accomplished by iterative algorithms, is a ubiquitous task in science and engineering. To accommodate the dynamic range and precision requirements, these iterative solvers are carried out on floating-point processing units, which are not efficient in handling large-scale matrix multiplications and inversions. Low-precision, fixed-point digital or analog processors consume only a fraction of the energy per operation than their floating-point counterparts, yet their current usages exclude iterative solvers due to the cumulative computational errors arising from fixed-point arithmetic. In this work, we show that for a simple iterative algorithm, such as Richardson iteration, using a fixed-point processor can provide the same convergence rate and achieve solutions beyond its native precision when combined with residual iteration. These results indicate that power-efficient computing platforms consisting of analog computing devices can be used to solve a broad range of problems without compromising the speed or precision.more » « less
-
Buchin, Kevin ; Colin de Verdiere, Eric (Ed.)In this paper, we prove a two-sided variant of the Kirszbraun theorem. Consider an arbitrary subset X of Euclidean space and its superset Y. Let f be a 1-Lipschitz map from X to ℝ^m. The Kirszbraun theorem states that the map f can be extended to a 1-Lipschitz map ̃ f from Y to ℝ^m. While the extension ̃ f does not increase distances between points, there is no guarantee that it does not decrease distances significantly. In fact, ̃ f may even map distinct points to the same point (that is, it can infinitely decrease some distances). However, we prove that there exists a (1 + ε)-Lipschitz outer extension f̃:Y → ℝ^{m'} that does not decrease distances more than "necessary". Namely, ‖f̃(x) - f̃(y)‖ ≥ c √{ε} min(‖x-y‖, inf_{a,b ∈ X} (‖x - a‖ + ‖f(a) - f(b)‖ + ‖b-y‖)) for some absolutely constant c > 0. This bound is asymptotically optimal, since no L-Lipschitz extension g can have ‖g(x) - g(y)‖ > L min(‖x-y‖, inf_{a,b ∈ X} (‖x - a‖ + ‖f(a) - f(b)‖ + ‖b-y‖)) even for a single pair of points x and y. In some applications, one is interested in the distances ‖f̃(x) - f̃(y)‖ between images of points x,y ∈ Y rather than in the map f̃ itself. The standard Kirszbraun theorem does not provide any method of computing these distances without computing the entire map ̃ f first. In contrast, our theorem provides a simple approximate formula for distances ‖f̃(x) - f̃(y)‖.more » « less
-
We propose a globally convergent numerical method to compute solutions to a general class of quasi-linear PDEs with both Neumann and Dirichlet boundary conditions. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to the PDE under consideration. To find this fixed point, we define a recursive sequence with an arbitrary initial term using the same manner as in the proof of the contraction principle. Applying a Carleman estimate, we show that the sequence above converges to the desired solution. On the other hand, we also show that our method delivers reliable solutions even when the given data are noisy. Numerical examples are presented.more » « less