Abstract This paper develops the concept of flood problem framing to understand decision-makers’ priorities in flood risk management in the Los Angeles Metropolitan Region in California (LA Metro). Problem frames shape an individual’s preferences for particular management strategies and their future behaviors. While flooding is a complex, multifaceted problem, with multiple causes and multiple impacts, a decision-maker is most likely to manage only those dimensions of flooding about which they are aware or concerned. To evaluate flood decision-makers’ primary concerns related to flood exposure, vulnerability, and management in the LA Metro, we draw on focus groups with flood control districts, city planners, nonprofit organizations, and other flood-related decision-makers. We identify numerous concerns, including concerns about specific types of floods (e.g., fluvial vs pluvial) and impacts to diverse infrastructure and communities. Our analyses demonstrate that flood concerns aggregate into three problem frames: one concerned with large fluvial floods exacerbated by climate change and their housing, economic, and infrastructure impacts; one concerned with pluvial nuisance flooding, pollution, and historic underinvestment in communities; and one concerned with coastal and fluvial flooding’s ecosystem impacts. While each individual typically articulated concerns that overlapped with only one problem frame, each problem frame was discussed by numerous organization types, suggesting low barriers to cross-organizational coordination in flood planning and response. This paper also advances our understanding of flood risk perception in a region that does not face frequent large floods. Significance StatementThis paper investigates the primary concerns that planners, flood managers, and other decision-makers have about flooding in Southern California. This is important because the way that decision-makers understand flooding shapes the way that they will plan for and respond to flood events. We find that some decision-makers are primarily concerned with large floods affecting large swaths of infrastructure and housing; others are concerned with frequent, small floods that mobilize pollution in low-income areas; and others are concerned with protecting coastal ecosystems during sea level rise. Our results also highlight key priorities for research and practice, including the need for flexible and accessible flood data and education about how to evacuate.
more »
« less
Governing the gaps in water governance and land-use planning in a megacity: The example of hydrological risk in Mexico City
Megacities are socio-ecological systems (SES) that encompass complex interactions between residents, institutions, and natural resource management. These interactions are exacerbated by climate change as resources such as water become scarce or hazardous through drought and flooding. In order to develop pathways for improved sustainability, the disparate factors that create vulnerable conditions and outcomes must be visible to decision-makers. Nevertheless, for such decision-makers to manage vulnerability effectively, they need to define the salient boundaries of the urban SES, and the relevant biophysical, technological, and socio-institutional attributes that play critical roles in vulnerability dynamics. Here we explore the problem of hydrological risk in Mexico City, where vulnerabilities to flooding and water scarcity are interconnected temporally and spatially, yet the formal and informal institutions and actors involved in the production and management of vulnerability are divided into two discrete problem domains: land-use planning and water resource management. We analyze interviews with city officials working in both domains to understand their different perspectives on the dynamics of socio-hydrological risk, including flooding and water scarcity. We find governance gaps within land-use planning and water management that lead to hydro-social risk, stemming from a failure to address informal institutions that exacerbate vulnerability to flooding and water scarcity. Mandates in both sectors are overlapping and confusing, while socio-hydrological risk is externalized to the informal domain, making it ungoverned. Integrated water management approaches that recognize and incorporate informality are needed to reduce vulnerability to water scarcity and flooding.
more »
« less
- Award ID(s):
- 1657773
- PAR ID:
- 10086373
- Date Published:
- Journal Name:
- Cities
- Volume:
- 83
- ISSN:
- 1873-6084
- Page Range / eLocation ID:
- 61-70
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Water access and use impact land management decisions and livelihoods. Despite the integral role water plays in land systems, land system science (LSS) research often fails to explicitly incorporate water into analyses of socioecological systems (SES) resilience related to land. Nonetheless, water scarcity, especially in the face of climate change and resource degradation, is a pressing issue. Water availability is crucial to many ecosystem functions, from supporting biodiversity to mitigating extreme weather events such as flooding or drought. In this introduction to the “Water in Land System Science” Special Issue, we argue for deeper integration of land and water dynamics in LSS to increase SES resilience. First, we present an overview of the need for this integration, followed by a synopsis of the authored contributions in this Special Issue towards this goal. We then provide potential entry points researchers can use to foster this integration, exploring the following topics: water governance and hydrosocial territories, the cultural geographies of water, hydrophilia, water in agricultural transitions, remote sensing innovations, and participatory approaches to the study of the water component of land systems. We conclude that interactions between land, water, and people remain understudied, despite being more important than ever for ensuring future sustainability.more » « less
-
Abstract This study synthesizes the current understanding of the hydrological, impact, and adaptation processes underlying drought‐to‐flood events (i.e., consecutive drought and flood events), and how they interact. Based on an analysis of literature and a global assessment of historic cases, we show how drought can affect flood risk and assess under which circumstances drought‐to‐flood interactions can lead to increased or decreased risk. We make a distinction between hydrological, socio‐economic and adaptation processes. Hydrological processes include storage and runoff processes, which both seem to mostly play a role when the drought is a multiyear event and when the flood occurs during the drought. However, which process is dominant when and where, and how this is influenced by human intervention needs further research. Processes related to socio‐economic impacts have been studied less than hydrological processes, but in general, changes in vulnerability seem to play an important role in increasing or decreasing drought‐to‐flood impacts. Additionally, there is evidence of increased water quality problems due to drought‐to‐flood events, when compared to drought or flood events by themselves. Adaptation affects both hydrological (e.g., through groundwater extraction) or socio‐economic (e.g., influencing vulnerability) processes. There are many examples of adaptation, but there is limited evidence of when and where certain processes occur and why. Overall, research on drought‐to‐flood events is scarce. To increase our understanding of drought‐to‐flood events we need more comprehensive studies on the underlying hydrological, socio‐economic, and adaptation processes and their interactions, as well as the circumstances that lead to the dominance of certain processes. This article is categorized under:Science of Water > Hydrological ProcessesScience of Water > Water Extremesmore » « less
-
Hydrological systems in the Anthropocene have shown substantial shifts from their natural processes due to human modifications. Consequently, deploying coupled human-water modeling is a critical tool to analyze observed changes. However, the development of socio-hydrological models often requires extensive qualitative data collection in the field and analysis. Despite the advances in developing inter-disciplinary methodologies in utilizing qualitative data for coupled human-water modeling, there is a need to identify influential parameters in these systems to inform data collection. Here, we present an exploratory socio-hydrological model to systemically investigate the feedback system of public infrastructure providers, resource users, and the dynamics of water scarcity at the catchment scale to inform data collection and analysis in the field. Specifically, we propose a novel socio-hydrological model by employing and integrating a top-down hydrological model and an extension of Aqua.MORE Model (an Agent-Based Model designed to simulate dynamics of water supply and demand). Specifically, we model alternate behavioral theories of human decision-making to represent the agents" behavior. Then, we perform sensitivity analysis techniques to identify key socio-economic and behavioral parameters affecting emergence patterns in a stylized human-dominated catchment. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. The results will potentially point which parameters are influential and how they could be mapped to a particular interview or survey question. This study will help us to identify features of decision-making behavior for inclusion in fieldwork, that be might be overlooked in the absence of the proposed modeling. We anticipate that the proposed approach also contributes to the current Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) which aims at improving the interpretation of the hydrological processes governing the socio-hydrological systems by focusing on their changing dynamics in connection with rapidly changing human systems.more » « less
-
Flooding is a natural hazard that touches nearly all facets of the globe and is expected to become more frequent and intensified due to climate and land-use change. However, flooding does not impact all individuals equally. Therefore, understanding how flooding impacts distribute across populations of different socioeconomic and demographic backgrounds is vital. One approach to reducing flood risk on people is using indicators, such as social vulnerability indices and flood exposure metrics, to inform decision-making for flood risk management. However, such indicators can face the scale and zonal effect produced by the Modifiable Areal Unit Problem (MAUP). This study investigates how the U.S. Census block group, tract, and county scale selection impacts social vulnerability and flood exposure outcomes within coastal Virginia, USA. Here we show how (1) scale selection can obstruct our understanding of drivers of vulnerability, (2) increasingly aggregated scales significantly undercount highly vulnerable populations, and (3) hotspot clusters of social vulnerability and flood exposure can identify variable priority areas for current and future flood risk reduction. Study results present considerations about using such indicators, given the real-life consequences that can occur due to the MAUP. The results of this work warrant understanding the implications of scale selection on research methodological approaches and what this means for practitioners and policymakers that utilize such information to help guide flood mitigation strategies.more » « less
An official website of the United States government

