An Enzyme-Mediated Amplification Strategy Enables Detection of β-Lactamase Activity Directly in Unprocessed Clinical Samples for Phenotypic Detection of β-Lactam Resistance
- Award ID(s):
- 1756085
- Publication Date:
- NSF-PAR ID:
- 10086563
- Journal Name:
- ChemBioChem
- Volume:
- 19
- Issue:
- 20
- Page Range or eLocation-ID:
- 2173 to 2177
- ISSN:
- 1439-4227
- Sponsoring Org:
- National Science Foundation
More Like this
-
Marshall, Christopher W. (Ed.)ABSTRACT Identification of genes encoding β-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 × precision × recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla . Applicationmore »