skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Influence of Vertical Wind Shear on the Evolution of Mountain-Wave Momentum Flux
The influence of vertical shear on the evolution of mountain-wave momentum fluxes in time-varying cross-mountain flows is investigated by numerical simulation and analyzed using ray tracing and the WKB approximation. The previously documented tendency of momentum fluxes to be strongest during periods of large-scale cross-mountain flow acceleration can be eliminated when the cross-mountain wind increases strongly with height. In particular, the wave packet accumulation mechanism responsible for the enhancement of the momentum flux during periods of cross-mountain flow acceleration is eliminated by the tendency of the vertical group velocity to increase with height in a mean flow with strong forward shear, thereby promoting vertical separation rather than concentration of vertically propagating wave packets.  more » « less
Award ID(s):
1545927
PAR ID:
10086604
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
3
ISSN:
0022-4928
Page Range / eLocation ID:
p. 749-756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A companion paper by Lund et al. (2020) employed a compressible model to describe the evolution of mountain waves arising due to increasing flow with time over the Southern Andes, their breaking, secondary gravity waves and acoustic waves arising from these dynamics, and their local responses. This paper describes the mountain wave, secondary gravity wave, and acoustic wave vertical fluxes of horizontal momentum, and the local and large-scale three-dimensional responses to gravity breaking and wave/mean-flow interactions accompanying this event. Mountain wave and secondary gravity wave momentum fluxes and deposition vary strongly in space and time due to variable large-scale winds and spatially-localized mountain wave and secondary gravity wave responses. Mountain wave instabilities accompanying breaking induce strong, local, largely-zonal forcing. Secondary gravity waves arising from mountain wave breaking also interact strongly with large-scale winds at altitudes above ~80km. Together, these mountain wave and secondary gravity wave interactions reveal systematic gravity-wave/mean-flow interactions having implications for both mean and tidal forcing and feedbacks. Acoustic waves likewise achieve large momentum fluxes, but typically imply significant responses only at much higher altitudes. 
    more » « less
  2. Abstract Realistic computational simulations in different oceanic basins reveal prevalent prograde mean flows (in the direction of topographic Rossby wave propagation along isobaths; aka topostrophy) on topographic slopes in the deep ocean, consistent with the barotropic theory of eddy-driven mean flows. Attention is focused on the western Mediterranean Sea with strong currents and steep topography. These prograde mean currents induce an opposing bottom drag stress and thus a turbulent boundary layer mean flow in the downhill direction, evidenced by a near-bottom negative mean vertical velocity. The slope-normal profile of diapycnal buoyancy mixing results in downslope mean advection near the bottom (a tendency to locally increase the mean buoyancy) and upslope buoyancy mixing (a tendency to decrease buoyancy) with associated buoyancy fluxes across the mean isopycnal surfaces (diapycnal downwelling). In the upper part of the boundary layer and nearby interior, the diapycnal turbulent buoyancy flux divergence reverses sign (diapycnal upwelling), with upward Eulerian mean buoyancy advection across isopycnal surfaces. These near-slope tendencies abate with further distance from the boundary. An along-isobath mean momentum balance shows an advective acceleration and a bottom-drag retardation of the prograde flow. The eddy buoyancy advection is significant near the slope, and the associated eddy potential energy conversion is negative, consistent with mean vertical shear flow generation for the eddies. This cross-isobath flow structure differs from previous proposals, and a new one-dimensional model is constructed for a topostrophic, stratified, slope bottom boundary layer. The broader issue of the return pathways of the global thermohaline circulation remains open, but the abyssal slope region is likely to play a dominant role. 
    more » « less
  3. Abstract The influence of gravity waves generated by surface stress and by topography on the atmospheric kinetic energy (KE) spectrum is examined using idealized simulations of a cyclone growing in baroclinically unstable shear flow. Even in the absence of topography, surface stress greatly enhances the generation of gravity waves in the vicinity of the cold front, and vertical energy fluxes associated with these waves produce a pronounced shallowing of the KE spectrum at mesoscale wavelengths relative to the corresponding free-slip case. The impact of a single isolated ridge is, however, much more pronounced than that of surface stress. When the mountain waves are well developed, they produce a wavenumber to the −5/3 spectrum in the lower stratosphere over a broad range of mesoscale wavelengths. In the midtroposphere, a smaller range of wavelengths also exhibits a −5/3 spectrum. When the mountain is 500 m high, the waves do not break, and their KE is entirely associated with the divergent component of the velocity field, which is almost constant with height. When the mountain is 2 km high, wave breaking creates potential vorticity, and the rotational component of the KE spectrum is also strongly energized by the waves. Analysis of the spectral KE budgets shows that the actual spectrum is the result of continually shifting balances of direct forcing from vertical energy flux divergence, conservative advective transport, and buoyancy flux. Nevertheless, there is one interesting example where the −5/3-sloped lower-stratospheric energy spectrum appears to be associated with a gravity-wave-induced upscale inertial cascade. 
    more » « less
  4. Abstract Linear theory has long been used to study mountain waves and has been successful in describing much of their behaviour. In the simplest theoretical context, that of two‐dimensional steady‐state flow with constant Brunt–Väisälä frequency (N) and horizontal wind speed (U), finite‐amplitude effects are relatively minor until wave breaking occurs. However, in more complex environmental profiles, significant finite‐amplitude effects occur below the wave‐breaking threshold. We constructed a linearized version of a fully nonlinear time‐dependent model, thereby facilitating direct comparisons between linear and finite‐amplitude solutions in cases with upstream profiles representative of typical real‐world events. Beginning with the simplest profile that includes a tropopause, namely an environment with constant upstream wind speed and two layers of constant static stability, we progressively investigate more complex profiles that include vertical wind shear typical of the midlatitude westerlies. Our results demonstrate that, even without wave breaking, finite‐amplitude effects can play an important role in modulating the mountain‐wave amplitude and gravity‐wave drag. The modulation is a function of the tropopause height and is most pronounced when the cross‐ridge flow increases strongly with height. 
    more » « less
  5. Abstract The quasi‐biennial oscillation (QBO), a ubiquitous feature of the zonal mean zonal winds in the equatorial lower stratosphere, is forced by selective dissipation of atmospheric waves that range in periods from days to hours. However, QBO circulations in numerical models tend to be weak compared with observations, probably because of limited vertical resolution that cannot adequately resolve gravity waves and the height range over which they dissipate. Observations are required to help quantify wave effects. The passage of a superpressure balloon (SPB) near a radiosonde launch site in the equatorial Western Pacific during the transition from the eastward to westward phase of the QBO at 20 km permits a coordinated study of the intrinsic frequencies and vertical structures of two inertia‐gravity wave packets with periods near 1 day and 3 days, respectively. Both waves have large horizontal wavelengths of about 970 and 5,500 km. The complementary nature of the observations provided information on their momentum fluxes and the evolution of the waves in the vertical. The near 1 day westward propagating wave has a critical level near 20 km, while the eastward propagating 3‐day wave is able to propagate through to heights near 30 km before dissipation. Estimates of the forcing provided by the momentum flux convergence, taking into account the duration and scale of the forcing, suggests zonal force of about 0.3–0.4 m s−1 day−1for the 1‐day wave and about 0.4–0.6 m s−1 day−1for the 3‐day wave, which acts for several days. 
    more » « less