Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.
The Calyptratae, one of the most species‐rich fly clades, only originated and diversified after the Cretaceous–Palaeogene extinction event and yet exhibit high species diversity and a diverse array of life history strategies including predation, phytophagy, saprophagy, haematophagy and parasitism. We present the first phylogenomic analysis of calyptrate relationships. The analysis is based on 40 species representing all calyptrate families and on nucleotide and amino acid data for 1456 single‐copy protein‐coding genes obtained from shotgun sequencing of transcriptomes. Topologies are overall well resolved, robust and largely congruent across trees obtained with different approaches (maximum parsimony, maximum likelihood, coalescent‐based species tree, four‐cluster likelihood mapping). Many nodes have 100% bootstrap and jackknife support, but the true support varies by more than one order of magnitude [Bremer support from 3 to 3427; random addition concatenation analysis (
- NSF-PAR ID:
- 10086654
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Cladistics
- Volume:
- 35
- Issue:
- 6
- ISSN:
- 0748-3007
- Page Range / eLocation ID:
- p. 605-622
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The hemipteran suborder Auchenorrhyncha is a highly diverse, ecologically and agriculturally important group of primarily phytophagous insects which has been a source of phylogenetic contention for many years. Here, we have used transcriptome sequencing to assemble 2139 orthologues from 84 auchenorrhynchan species representing 27 families; this is the largest and most taxonomically comprehensive phylogenetic dataset for this group to date. We used both maximum likelihood and multispecies coalescent analyses to reconstruct the evolutionary history in this group using amino acid, nucleotide, and degeneracy‐coded nucleotide orthologue data. Although many relationships at the superfamily level were consistent between analyses, several differing, highly supported topologies were recovered using different datasets and reconstruction methods, most notably the differential placement of Cercopoidea as sister to either Cicadoidea or Membracoidea. To further interrogate the recovered topologies, we explored the contribution of genes as partitioned by third‐codon‐position guanine‐cytosine (GC) content and heterogeneity. We found consistent support for several relationships, including Cercopoidea + Cicadoidea, most often in genes that would be expected to be enriched for the true species tree if recombination‐based dynamics in GC content have contributed to the observed GC heterogeneity. Our results provide a generally well‐supported framework for future studies of auchenorrhynchan phylogeny and suggest that transcriptome sequencing is likely to be a fruitful source of phylogenetic data for resolving its clades. However, we caution that future work should account for the potential effects of GC content heterogeneity on relationships recovered in this group.
-
Abstract The family Mutillidae (Hymenoptera) is a species‐rich group of aculeate wasps that occur worldwide. The higher‐level classification of the family has historically been controversial due, in part, to the extreme sexual dimorphism exhibited by these insects and their morphological similarity to other wasp taxa that also have apterous females. Modern hypotheses on the internal higher classification of Mutillidae have been exclusively based on morphology and, further, they include Myrmosinae as a mutillid subfamily. In contrast, several molecular‐based family‐level studies of Aculeata recovered Myrmosinae as a nonmutillid taxon. To test the validity of these morphology‐based classifications and the phylogenetic placement of the controversial taxon Myrmosinae, a phylogenomic study of Mutillidae was conducted using ultraconserved elements (UCEs). All currently recognized subfamilies and tribes of Mutillidae were represented in this study using 140 ingroup taxa. The maximum likelihood criterion (ML) and the maximum parsimony criterion (MP) were used to infer the phylogenetic relationships within the family and related taxa using an aligned data set of 238,764 characters; the topologies of these respective analyses were largely congruent. The modern higher classification of Mutillidae, based on morphology, is largely congruent with the phylogenomic results of this study at the subfamily level, whereas the tribal classification is poorly supported. The subfamily Myrmosinae was recovered as sister to Sapygidae in the ML analysis and sister to Sapygidae + Pompilidae in the MP analysis; it is consequently raised to the family level, Myrmosidae,
stat.nov. The two constituent tribes of Myrmosidae are raised to the subfamily level, Kudakrumiinae,stat.nov. , and Myrmosinae,stat.nov. All four recognized tribes of Mutillinae were found to be non‐monophyletic; three additional mutilline clades were recovered in addition to Ctenotillini, Mutillini, Smicromyrmini, and Trogaspidiini sensu stricto. Three new tribes are erected for members of these clades: Pristomutillini Waldren,trib.nov. , Psammothermini Waldren,trib.nov. , and Zeugomutillini Waldren,trib.nov. All three recognized tribes of Sphaeropthalminae were found to be non‐monophyletic; six additional sphaeropthalmine clades were recovered in addition to Dasymutillini, Pseudomethocini, and Sphaeropthalmini sensu stricto. The subtribe Ephutina of Mutillinae: Mutillini was found to be polyphyletic, with theEphuta genus‐group recovered within Sphaeropthalminae and theOdontomutilla genus‐group recovered as sister to Myrmillinae + Mutillinae. Consequently, the subtribe Ephutina is transferred from Mutillinae: Mutillini and is raised to a tribe within Sphaeropthalminae, Ephutini,stat.nov. Further, the taxon Odontomutillinae,stat.nov. , is raised from a synonym of Ephutina to the subfamily level. The sphaeropthalmine tribe Pseudomethocini was found to be polyphyletic, with the subtribe Euspinoliina recovered as a separate clade in Sphaeropthalminae; consequently, Euspinoliina is raised to a tribe, Euspinoliini,stat.nov. , in Sphaeropthalminae. The dasylabrine tribe Apteromutillini was recovered within Dasylabrini and is proposed as a new synonym of Dasylabrinae. Finally, dating analyses were conducted to infer the ages of the Pompiloidea families (Mutillidae, Myrmosidae, Pompilidae, and Sapygidae) and the ages of the Mutillidae subfamilies and tribes. -
Abstract The genus
Liriomyza Mik (Diptera: Agromyzidae) is a diverse and globally distributed group of acalyptrate flies. Phylogenetic relationships amongLiriomyza species have remained incompletely investigated and have never been fully addressed using molecular data. Here, we reconstruct the phylogeny of the genusLiriomyza using various phylogenetic methods (maximum likelihood, Bayesian inference, and gene tree coalescence) on target‐capture‐based phylogenomic datasets (nucleotides and amino acids) obtained from anchored hybrid enrichment (AHE). We have recovered tree topologies that are nearly congruent across all data types and methods, and individual clade support is strong across all phylogenetic analyses. Moreover, defined morphological species groups and clades are well‐supported in our best estimates of the molecular phylogeny.Liriomyza violivora (Spencer) is a sister group to all remaining sampledLiriomyza species, and the well‐known polyphagous vegetable pests [L. huidobrensis (Blanchard),L. langei Frick,L. bryoniae. (Kaltenbach),L. trifolii (Burgess),L. sativae Blanchard, andL. brassicae (Riley)]. belong to multiple clades that are not particularly closely related on the trees. Often, closely relatedLiriomyza species feed on distantly related host plants. We reject the hypothesis that cophylogenetic processes betweenLiriomyza species and their host plants drive diversification in this genus. Instead,Liriomyza exhibits a widespread pattern of major host shifts across plant taxa. Our new phylogenetic estimate forLiriomyza species provides considerable new information on the evolution of host‐use patterns in this genus. In addition, it provides a framework for further study of the morphology, ecology, and diversification of these important flies. -
Abstract We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S,
COI ) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher‐level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status ) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb‐weavers, compatible with their non‐monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella , from Anyphaenidae), Chummidae (Chumma ) (new syn. ) and Tasmarubriinae (Tasmarubrius ,Tasmabrochus andTeeatta , from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to includeCalymmaria ,Cryphoeca ,Ethobuella andWillisius (transferred from Hahniidae), andBlabomma andYorima (transferred from Dictynidae). Cycloctenidae are redefined to includeOrepukia (transferred from Agelenidae) andPakeha andParavoca (transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, withAmphinecta ,Mamoea ,Maniho ,Paramamoea andRangitata (transferred from Amphinectidae); Ischaleinae, withBakala andManjala (transferred from Amaurobiidae) andIschalea (transferred from Stiphidiidae); Metaltellinae, withAustmusia ,Buyina ,Calacadia ,Cunnawarra ,Jalkaraburra ,Keera ,Magua ,Metaltella ,Penaoola andQuemusia ; Porteriinae (new rank ), withBaiami ,Cambridgea ,Corasoides andNanocambridgea (transferred from Stiphidiidae); and Desinae, withDesis , and provisionallyPoaka (transferred from Amaurobiidae) andBarahna (transferred from Stiphidiidae).Argyroneta is transferred from Cybaeidae to Dictynidae.Cicurina is transferred from Dictynidae to Hahniidae. The generaNeoramia (from Agelenidae) andAorangia ,Marplesia andNeolana (from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status ) includes two subfamilies: Myroinae, withGasparia ,Gohia ,Hulua ,Neomyro ,Myro ,Ommatauxesis andOtagoa (transferred from Desidae); and Toxopinae, withMidgee andJamara , formerly Midgeeinae,new syn. (transferred from Amaurobiidae) andHapona ,Laestrygones ,Lamina ,Toxops andToxopsoides (transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the “ctenids”Ancylometes andCupiennius , although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae.Orthobula is transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae(new fam. , includingXenoctenus ,Paravulsor andOdo , transferred from Miturgidae, as well asIncasoctenus from Ctenidae). We confirm the inclusion ofZora (formerly Zoridae) within Miturgidae.