skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Editorial: Adverse Reactions to Biomaterials: State of the Art in Biomaterial Risk Assessment, Immunomodulation and in vitro Models for Biomaterial Testing
Award ID(s):
1651385
PAR ID:
10086925
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
7
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen‐presenting cells and subsequent T cell priming processes are among the first FDA‐approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen‐specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor‐specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials‐based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials‐based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines. 
    more » « less
  2. The active pharmaceutical ingredients (APIs) have to cross the natural barriers and get into the blood to impart the pharmacological effects. The tight junctions (TJs) between the epithelial cells serve as the major selectively permeable barriers and control the paracellular transport of the majority of hydrophilic drugs, in particular, peptides and proteins. TJs perfectly balance the targeted transport and the exclusion of other unexpected pathogens under the normal conditions. Many biomaterials have shown the capability to open the TJs and improve the oral bioavailability and targeting efficacy of the APIs. Nevertheless, there is limited understanding of the biomaterial–TJ interactions. The opening of the TJs further poses the risk of autoimmune diseases and infections. This review article summarizes the most updated literature and presents insights into the TJ structure, the biomaterial–TJ interaction mechanism, the benefits and drawbacks of TJ disruption, and methods for evaluating such interactions. 
    more » « less
  3. This review highlights recent breakthroughs in biomaterial-based strategies for modulating neuroinflammation in central nervous system injury and disease, including nanoparticles, hydrogels, neural probe coatings, and implantable scaffolds. 
    more » « less
  4. To address a key challenge of conjugated polymers in biomedical applications having poor antifouling properties that eventually leads to the failure and reduced lifetime of bioelectronics in the body, herein we describe the design, synthesis, and evaluation of our newly designed multifunctional zwitterionic liquid crystalline polymer PCBTh-C8C10 , which is facilely synthesized using oxidative polymerization. A conjugated polythiophene backbone, a multifunctional zwitterionic side chain, and a mesogenic unit are integrated into one segment. By DSC and POM characterization, we verify that the introduction of 3,5-bis(2-octyl-1-dodecyloxy)benzene as a mesogenic unit into the polythiophene backbone allows the formation of the liquid crystalline mesophase of the resulting polymer. We also demonstrate that the PCBTh-C8C10 coated surface exhibits good conductivity, stability, hydrophilicity, and remarkable antibiofouling properties against protein adsorption, cell growth, and bacteria attachment. This new zwitterionic liquid crystalline polymer having good antibiofouling features will be widely recognized as a promising biomaterial that is applicable in implantable organic bioelectronics via inhibiting the foreign body response. A deep understanding of structure–property relationships of zwitterionic conjugated polymers has also been provided in this study. 
    more » « less