In this full research paper, we discuss the benefits and challenges of using GPT-4 to perform qualitative analysis to identify faculty’s mental models of assessment. Assessments play an important role in engineering education. They are used to evaluate student learning, measure progress, and identify areas for improvement. However, how faculty members approach assessments can vary based on several factors, including their own mental models of assessment. To understand the variation in these mental models, we conducted interviews with faculty members in various engineering disciplines at universities across the United States. Data was collected from 28 participants from 18 different universities. The interviews consisted of questions designed to elicit information related to the pieces of mental models (state, form, function, and purpose) of assessments of students in their classrooms. For this paper, we analyzed interviews to identify the entities and entity relationships in participant statements using natural language processing and GPT-4 as our language model. We then created a graphical representation to characterize and compare individuals’ mental models of assessment using GraphViz. We asked the model to extract entities and their relationships from interview excerpts, using GPT-4 and instructional prompts. We then compared the results of GPT-4 from a small portion of our data to entities and relationships that were extracted manually by one of our researchers. We found that both methods identified overlapping entity relationships but also discovered entities and relationships not identified by the other model. The GPT-4 model tended to identify more basic relationships, while manual analysis identified more nuanced relationships. Our results do not currently support using GPT-4 to automatically generate graphical representations of faculty’s mental models of assessments. However, using a human-in-the-loop process could help offset GPT-4’s limitations. In this paper, we will discuss plans for our future work to improve upon GPT-4’s current performance.
more »
« less
Using supervised learning techniques for entity relationships
Given different nancial data resources, it is very challenging to relate entities across the various resources since each resource has its own way of describing the entities and relationships. We work on identifying such relationships using context and available scores, using mainly supervised machine learning techniques to build classi fiers and predict new relationships or validate the existing ones based on the suitable measures of similarity.
more »
« less
- Award ID(s):
- 1738895
- PAR ID:
- 10087127
- Date Published:
- Journal Name:
- Proceeding DSMM'18 Proceedings of the Fourth International Workshop on Data Science for Macro-Modeling with Financial and Economic Datasets
- Volume:
- Article 13
- Page Range / eLocation ID:
- 1 to 2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this full research paper, we discuss the benefits and challenges of using GPT-4 to perform qualitative analysis to identify faculty’s mental models of assessment. Assessments play an important role in engineering education. They are used to evaluate student learning, measure progress, and identify areas for improvement. However, how faculty members approach assessments can vary based on several factors, including their own mental models of assessment. To understand the variation in these mental models, we conducted interviews with faculty members in various engineering disciplines at universities across the United States. Data was collected from 28 participants from 18 different universities. The interviews consisted of questions designed to elicit information related to the pieces of mental models (state, form, function, and purpose) of assessments of students in their classrooms. For this paper, we analyzed interviews to identify the entities and entity relationships in participant statements using natural language processing and GPT-4 as our language model. We then created a graphical representation to characterize and compare individuals’ mental models of assessment using GraphViz. We asked the model to extract entities and their relationships from interview excerpts, using GPT-4 and instructional prompts. We then compared the results of GPT-4 from a small portion of our data to entities and relationships that were extracted manually by one of our researchers. We found that both methods identified overlapping entity relationships but also discovered entities and relationships not identified by the other model. The GPT-4 model tended to identify more basic relationships, while manual analysis identified more nuanced relationships. Our results do not currently support using GPT-4 to automatically generate graphical representations of faculty’s mental models of assessments. However, using a human-in-the-loop process could help offset GPT-4’s limitations. In this paper, we will discuss plans for our future work to improve upon GPT-4’s current performance.more » « less
-
Abstract Natural language processing (NLP) techniques can enhance our ability to interpret plant science literature. Many state-of-the-art algorithms for NLP tasks require high-quality labelled data in the target domain, in which entities like genes and proteins, as well as the relationships between entities, are labelled according to a set of annotation guidelines. While there exist such datasets for other domains, these resources need development in the plant sciences. Here, we present the Plant ScIenCe KnowLedgE Graph (PICKLE) corpus, a collection of 250 plant science abstracts annotated with entities and relations, along with its annotation guidelines. The annotation guidelines were refined by iterative rounds of overlapping annotations, in which inter-annotator agreement was leveraged to improve the guidelines. To demonstrate PICKLE’s utility, we evaluated the performance of pretrained models from other domains and trained a new, PICKLE-based model for entity and relation extraction (RE). The PICKLE-trained models exhibit the second-highest in-domain entity performance of all models evaluated, as well as a RE performance that is on par with other models. Additionally, we found that computer science-domain models outperformed models trained on a biomedical corpus (GENIA) in entity extraction, which was unexpected given the intuition that biomedical literature is more similar to PICKLE than computer science. Upon further exploration, we established that the inclusion of new types on which the models were not trained substantially impacts performance. The PICKLE corpus is, therefore, an important contribution to training resources for entity and RE in the plant sciences.more » « less
-
The immense volume of user-generated content on social media provides a rich data source for big data research. Comentioned entities in social media content offer valuable information that can support a broad range of studies, from product market competition to dynamic social network mining and modeling. This paper introduces a new approach that combines named entity recognition (NER) and network modeling to extract and analyze co-mention relationships among entities in the same domain from unstructured social media data. This approach contributes to design for market systems literature because little research has investigated product competition via co-mention networks using large-scale unstructured social media data. In particular, the proposed approach provides designers with a new way to gain insight into market trends and aggregated customer preferences when customer choice data is insufficient. Moreover, our approach can easily support the evolution analysis of co-mention relationships beyond cross-sectional analysis of co-mention networks in a single year due to the abundance of social media data in multiple years. To demonstrate the approach to supporting multi-year product competition analysis, we perform a case study on mining co-mention networks of car models with Twitter data. The result shows that our approach can successfully extract the co-mention relationships of car models in multiple years from 2016 to 2019 from massive Twitter content; and enables us to conduct evolutionary co-mention network analysis with temporal network modeling and descriptive network analysis. The analysis confirmed that the co-mention network is capable of identifying frequently discussed entities and topics, such as car model pairs that often involve in competition and emerging vehicle technologies such as electric vehicles (EV). Furthermore, conducting evolutionary co-mention network analysis provides designers with an efficient way to monitor shifts in customer preferences for car features and to track trends in public discussions such as environmental issues associated with EVs over time. Our approach can be generally applied to other studies on co-mention relationships between entities, such as emerging technologies, cellphones, and political figures.more » « less
-
null (Ed.)Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding labelled training data. This necessitates entity linking models which are able to link mentions of unseen entities using learned representations of entities. Previous approaches link each mention independently, ignoring the relationships within and across documents between the entity mentions. These relations can be very useful for linking mentions in biomedical text where linking decisions are often difficult due mentions having a generic or a highly specialized form. In this paper, we introduce a model in which linking decisions can be made not merely by linking to a knowledge base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions. In experiments on the largest publicly available biomedical dataset, we improve the best independent prediction for entity linking by 3.0 points of accuracy, and our clustering-based inference model further improves entity linking by 2.3 points.more » « less
An official website of the United States government

