skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering a Decoy Substrate in Soybean to Enable Recognition of the Soybean Mosaic Virus NIa Protease
Award ID(s):
1551452
PAR ID:
10087288
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Molecular Plant-Microbe Interactions
ISSN:
0894-0282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Previous reports indicate variable soybean quality parameters exported from different geographic regions. This review compares soybean and soybean co‐products grown under diverse environmental conditions. While numerous studies have been conducted on whole soybean and soybean meal (SBM) composition by origin, similar analysis of soybean oil is lacking. This review has two objectives: 1) summarize soybean and SBM quality by origin using a meta‐analysis approach, and 2) analyze collected crude degummed soybean oil samples that originate from the US, Brazil and Argentina for key quality attributes. Soybeans from Brazil have higher levels of protein (P < 0.05) than US soybeans, but US soybeans have lower heat damage (P < 0.05) and total damage (P < 0.05) than soybeans from Brazil. US and Brazil SBM have higher crude protein (CP) (P < 0.05) than SBM from Argentina. At equal CP content, US SBM had less fiber (P < 0.0001), more sucrose (P < 0.0001) and lysine (P < 0.0001) and better protein quality than South American SBMs. Methionine, threonine, and cysteine levels were similar in soybean protein from US and Argentina and higher than that in soybean protein from Brazil. Crude degummed soybean oil from Brazil had more (P < 0.05) free fatty acids, neutral oil loss, phosphorus, calcium and magnesium than crude degummed soybean oil from the US or Argentina. Our analysis suggests that environmental conditions under which soybeans are grown, stored, and handled can have a large impact on chemical composition and nutrient quality of soybean meal and soybean oil. 
    more » « less
  2. Biomass-derived carbon dots (CDs) are biocompatible and have potential for a variety of applications, including bioimaging and biosensing. In this work, we use ground soybean residuals to synthesize carbon nanoparticles by hydrothermal carbonization (HTC), annealing at high temperature, and laser ablation (LA) in a NH 4 OH solution. The carbon nanoparticles synthesized with the HTC process (HTC-CDs) exhibit photoluminescent characteristics with strong blue emission. The annealing of the HTC-processed carbon particles in the range of 250 to 850 °C causes a loss of the photoluminescent characteristics of the CDs without any significant change in the microstructure (amorphous structure) of the carbon particles. The LA processing of the annealed HTC-processed carbon particles introduces nitrogen-containing surface-functional groups and leads to the recovery of the photoluminescent features that are different from those of the HTC-CDs and dependent on the fraction of nitrogen in the surface-functional groups. The photoluminescence of both the HTC-CDs and LA-CDs is largely due to the presence of N-containing surface-functional groups. The quantum yield of the LA-CDs is more constant than that of the HTC-CDs under continuous UV excitation and does not exhibit a significant reduction after 150 min of excitation. The methods used in this work provide a simple and green strategy to introduce N-surface-functional groups to carbon nanoparticles made from biomass and biowaste and to produce stable photoluminescent CDs with excellent water-wettability. 
    more » « less
  3. The soybean cyst nematode (SCN; Heterodera glycines) facilitates infection by secreting a repertoire of effector proteins into host cells to establish a permanent feeding site composed of a syncytium of root cells. Among the diverse proteins secreted by the nematode, we were specifically interested in identifying proteases to pursue our goal of engineering decoy substrates that elicit an immune response when cleaved by an SCN protease. We identified a cysteine protease that we named Cysteine Protease 1 (CPR1), which was predicted to be a secreted effector based on transcriptomic data obtained from SCN esophageal gland cells, the presence of a signal peptide, and the lack of transmembrane domains. CPR1 is conserved in all isolates of SCN sequenced to date, suggesting it is critical for virulence. Transient expression of CPR1 in Nicotiana benthamiana leaves suppressed cell death induced by a constitutively active nucleotide binding leucine-rich repeat protein, RPS5, indicating that CPR1 inhibits effector-triggered immunity. CPR1 localizes in part to the mitochondria when expressed in planta. Proximity-based labeling in transgenic soybean roots, co-immunoprecipitation, and cleavage assays identified a branched-chain amino acid aminotransferase from soybean (GmBCAT1) as a substrate of CPR1. Consistent with this, GmBCAT1 also localizes to mitochondria. Silencing of the CPR1 transcript in the nematode reduced penetration frequency in soybean roots, while the expression of CPR1 in soybean roots enhanced susceptibility. Our data demonstrates that CPR1 is a conserved effector protease with a direct target in soybean roots, highlighting it as a promising candidate for decoy engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less