skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The genetic architecture of teosinte catalyzed and constrained maize domestication

The process of evolution under domestication has been studied using phylogenetics, population genetics–genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance–covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.

 
more » « less
NSF-PAR ID:
10087547
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
12
ISSN:
0027-8424
Page Range / eLocation ID:
p. 5643-5652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Very little is known about how domestication was constrained by the quantitative genetic architecture of crop progenitors and how quantitative genetic architecture was altered by domestication. Yang et al. [C. J. Yang et al. , Proc. Natl. Acad. Sci. U.S.A. 116, 5643–5652 (2019)] drew multiple conclusions about how genetic architecture influenced and was altered by maize domestication based on one sympatric pair of teosinte and maize populations. To test the generality of their conclusions, we assayed the structure of genetic variances, genetic correlations among traits, strength of selection during domestication, and diversity in genetic architecture within teosinte and maize. Our results confirm that additive genetic variance is decreased, while dominance genetic variance is increased, during maize domestication. The genetic correlations are moderately conserved among traits between teosinte and maize, while the genetic variance–covariance matrices ( G -matrices) of teosinte and maize are quite different, primarily due to changes in the submatrix for reproductive traits. The inferred long-term selection intensities during domestication were weak, and the neutral hypothesis was rejected for reproductive and environmental response traits, suggesting that they were targets of selection during domestication. The G -matrix of teosinte imposed considerable constraint on selection during the early domestication process, and constraint increased further along the domestication trajectory. Finally, we assayed variation among populations and observed that genetic architecture is generally conserved among populations within teosinte and maize but is radically different between teosinte and maize. While selection drove changes in essentially all traits between teosinte and maize, selection explains little of the difference in domestication traits among populations within teosinte or maize. 
    more » « less
  2. Walsh, Bruce (Ed.)
    Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte. 
    more » « less
  3. Abstract

    The evolution of sexual dimorphisms requires divergence between sexes in the evolutionary trajectories of the traits involved. Discerning how genetic architecture could facilitate such divergence has proven challenging because of the difficulty in estimating non-additive and sex-linked genetic variances using traditional quantitative genetic designs. Here we use a three-generation, double-first-cousin pedigree design to estimate additive, sex-linked and dominance (co)variances for 12 traits in the water strider,Aquarius remigis. Comparisons among these traits, which have size ratios ranging from 1 to 5 (larger/smaller), allow us to ask if sexual dimorphisms are associated with characteristic patterns of quantitative genetic variation. We frame our analysis around three main questions, derived from existing theory and empirical evidence: Are sexual dimorphisms associated with (1) lower additive inter-sex genetic correlations, (2) higher proportions of sex-linked variance, or (3) differences between sexes in autosomal additive and dominance genetic variances? For questions (1) and (2), we find weak and non-significant trends in the expected directions, which preclude definitive conclusions. However, in answer to question (3), we find strong evidence for a positive relationship between sexual dimorphism and differences between sexes in proportions of autosomal dominance variance. We also find strong interactions among the three genetic components indicating that their relative influence differs among traits and between sexes. These results highlight the need to include all three components of genetic (co)variance in both theoretical evolutionary models and empirical estimations of the genetic architecture of dimorphic traits.

     
    more » « less
  4. Abstract

    Sexual signalling traits are often observed to diverge rapidly among populations, thereby playing a potentially key early role in the evolution of reproductive isolation. While often assumed to reflect divergent sexual selection among populations, patterns of sexual trait diversification might sometimes be biased along axes of standing additive genetic variation and covariation among trait components. Additionally, theory predicts that environmentally induced phenotypic variation might facilitate rapid trait evolution, suggesting that patterns of divergence between populations should mirror phenotypic plasticity within populations. Here, we evaluate the concordance between observed axes of multivariate sexual trait divergence and predicted divergence based on (1) interpopulation variation in sexual selection, (2) additive genetic variances and (3) temperature‐related phenotypic plasticity in male courtship song among geographically isolated populations of the Hawaiian swordtail cricket,Laupala cerasina, which exhibit sexual isolation due acoustic signalling traits. The major axis of multivariate divergence,dmax, accounted for 76% of variation among population male song trait means and was moderately correlated with interpopulation differences in directional sexual selection based on female preferences. However, the majority of additive genetic variance was largely oriented away from the direction of divergence, suggesting that standing genetic variation may not play a dominant role in the patterning of signal divergence. In contrast, the axis of phenotypic plasticity strongly mirrored patterns of interpopulation phenotypic divergence, which is consistent with a role for temperature‐related plasticity in facilitating instead of inhibiting male song evolution and sexual isolation in these incipient species. We propose potential mechanisms by which sexual selection might interact with phenotypic plasticity to facilitate the rapid acoustic diversification observed in this species and clade.

     
    more » « less
  5. Abstract

    Plants have evolved diverse reproductive allocation strategies and seed traits to aid in dispersal, persistence in the seed bank, and establishment. In particular, seed size, dormancy, and early seedling vigor are thought to be key functional traits with important recruitment and fitness consequences across abiotic stress gradients. Selection for favored seed-trait combinations, or against maladaptive combinations, is likely an important driver shaping recruitment strategies. Here, we test for seed-trait plasticity and patterns of recruitment using two genotypes representative of contrasting upland and lowland ecotypes of Panicum hallii with field experiments in native versus foreign habitats. Furthermore, we test whether seed traits have been under directional selection in P. hallii using the v-test based on trait variance in a genetic cross. Finally, we evaluate the genetic architecture of ecotypic divergence for these traits with quantitative trait locus (QTL) mapping. Field experiments reveal little plasticity but support a hypothesis of adaptation divergence among ecotypes based on recruitment. Patterns of segregation within recombinant hybrids provides strong support for directional selection driving ecotypic divergence in seed traits. Genetic mapping revealed a polygenic architecture with evidence of genetic correlation between seed mass, dormancy, and seedling vigor. Our results suggest that the evolution of these traits may involve constraints that affect the direction of adaptive divergence. For example, seed size and germination percentage shared two colocalized QTL with antagonistic additive effects. This supports the hypothesis of a functional genetic relationship between these traits, resulting in either large seed/strong dormancy or small seed/weak dormancy trait combinations. Overall, our study provides insights into the factors facilitating and potentially constraining ecotypic differentiation in seed traits.

     
    more » « less