skip to main content


Title: Light‐Driven Self‐Healing of Nanoparticle‐Based Metamolecules
Abstract

Metamolecules and crystals consisting of nanoscale building blocks offer rich models to study colloidal chemistry, materials science, and photonics. Herein we demonstrate the self‐assembly of colloidal Ag nanoparticles into quasi‐one‐dimensional metamolecules with an intriguing self‐healing ability in a linearly polarized optical field. By investigating the spatial stability of the metamolecules, we found that the origin of self‐healing is the inhomogeneous interparticle electrodynamic interactions enhanced by the formation of unusual nanoparticle dimers, which minimize the free energy of the whole structure. The equilibrium configuration and self‐healing behavior can be further tuned by modifying the electrical double layers surrounding the nanoparticles. Our results reveal a unique route to build self‐healing colloidal structures assembled from simple metal nanoparticles. This approach could potentially lead to reconfigurable plasmonic devices for photonic and sensing applications.

 
more » « less
NSF-PAR ID:
10087680
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
15
ISSN:
1433-7851
Page Range / eLocation ID:
p. 4917-4922
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metamolecules and crystals consisting of nanoscale building blocks offer rich models to study colloidal chemistry, materials science, and photonics. Herein we demonstrate the self‐assembly of colloidal Ag nanoparticles into quasi‐one‐dimensional metamolecules with an intriguing self‐healing ability in a linearly polarized optical field. By investigating the spatial stability of the metamolecules, we found that the origin of self‐healing is the inhomogeneous interparticle electrodynamic interactions enhanced by the formation of unusual nanoparticle dimers, which minimize the free energy of the whole structure. The equilibrium configuration and self‐healing behavior can be further tuned by modifying the electrical double layers surrounding the nanoparticles. Our results reveal a unique route to build self‐healing colloidal structures assembled from simple metal nanoparticles. This approach could potentially lead to reconfigurable plasmonic devices for photonic and sensing applications.

     
    more » « less
  2. Abstract

    Dissipative self‐assembly of colloidal nanoparticles offers the prospect of creating reconfigurable artificial materials and systems, yet the phenomenon only occurs far from thermodynamic equilibrium. Therefore, it is usually difficult to predict and control. Here, a dissipative colloidal solution system, where anisotropic chains with different interparticle separations in two perpendicular directions transiently arise among largely disordered silver nanoparticles illuminated by a laser beam, is reported. The optical field creates a nonequilibrium dissipative state, where a disorder‐to‐order transition occurs driven by anisotropic electrodynamic interactions coupled with electrostatic interactions. Investigation of the temporal dynamics and spatial arrangements of the nanoparticle system shows that the optical binding strength and entropy of the system are two crucial parameters for the formation of the anisotropic chains and responsible for adaptive behaviors, such as self‐replication of dimer units. Formation of anisotropic nanoparticle chains is also observed among colloidal nanoparticles made from other metal (e.g., Au), polymer (e.g., polystyrene), ceramic (e.g., CeO2), and hybrid materials (e.g., SiO2@Au core–shell), suggesting that light‐driven self‐organization will provide a wide range of opportunities to discover new dissipative structures under thermal fluctuations and build novel anisotropic materials with nanoscale order.

     
    more » « less
  3. Abstract

    Colloidal metasurfaces are emerging as promising candidates for the development of functional chemical metamaterials, combining the undisputed control over crystallography and surface chemistry achieved by synthetic nanochemistry with the scalability and versatility of colloidal self‐assembly strategies. In light of recent reports of colloidal plasmonic materials displaying high‐performing optical cavities, this Minireview discusses the use of this type of metamaterials in the specific context of non‐linear optical phenomena and non‐linear molecular spectroscopies. Our attention is focused on the opportunities and advantages that colloidal nanoparticles and self‐assembled plasmonic metasurfaces can bring to the table compared to more traditional nanofabrication strategies. Specifically, we believe that future work in this direction will express the full potential of non‐linear molecular spectroscopies to explore the chemical space, with a deeper understanding of plasmon‐molecule dynamics, plasmon‐mediated processes, and surface‐enhanced chemistry.

     
    more » « less
  4. Abstract

    Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.

     
    more » « less
  5. Abstract

    Differentiating mechanisms of zeolite crystallization is challenging owing to the vast number of species in growth solutions. The presence of amorphous colloidal particles is ubiquitous in many zeolite syntheses, and has led to extensive efforts to understand the driving force(s) for their self‐assembly and putative roles in processes of nucleation and growth. In this study, we use a combination of in situ scanning probe microscopy, particle dissolution measurements, and colloidal stability assays to elucidate the degree to which silica nanoparticles evolve in their structure during the early stages of silicalite‐1 synthesis. We show how changes in precursor structure are mediated by the presence of organics, and demonstrate how these changes lead to significant differences in precursor–crystal interactions that alter preferred modes of crystal growth. Our findings provide guidelines for selectively controlling silicalite‐1 growth by particle attachment or monomer addition, thus allowing for the manipulation of anisotropic rates of crystallization. In doing so, we also address a longstanding question regarding what factors are at our disposal to switch from a nonclassical to classical mechanism.

     
    more » « less