skip to main content


Title: Comparative Kinematics and Hydrodynamics of Mysticete Cetaceans: Morphological and Ecological Correlates with Swimming Performance
The scale-dependence of locomotor performance has long been studied in comparative biomechanics, but how animals move in their natural environment remains poorly understood. At the upper extreme of body mass, baleen whales (Mysteci) are predictably among the most efficient swimmers in terms of cost of transport through a combination of low mass-specific metabolic rate and high hydrodynamic efficiency. Such efficiency enables these oceanic giants to migrate vast distances and thus underlies a major component of their life history and functional ecology. However, we lack even basic kinematic data for most species. Here we combine morphometric data from flyover drone photography, whale-borne inertial sensing tag data, and computational fluid dynamics (CFD) to study the locomotion of four rorqual species. Focusing on fundamental kinematic parameters such as tailbeat frequency and forward speed, we quantified spatial and temporal changes in swimming performance for individual whales and compared these metrics across a wide body mass range. We also calculated thrust and drag using lunate tail hydrodynamic modeling (Fish 1993), and compared these values against those from CFD simulations carried out with realistic rigid-body models. Differences in excess of 100% between the two approaches point to the significant contributions of tail and head heaving to overall drag, and thus the need to account for them in rigid-body CFD simulations. Together these kinematic data and CFD modeling inform a new parametric factor designed at multiplying the rigid-body drag equation to predict the contribution of body heaving unsteady hydrodynamics in cetaceans.  more » « less
Award ID(s):
1656691
NSF-PAR ID:
10087939
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Meeting of the Society for Integrative and Comparative Biology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost.

     
    more » « less
  2. High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25 m (fin whale, Balaenoptera physalus; Bryde’s whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input (Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine- scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale. 
    more » « less
  3. Finlets are a series of small non-retractable fins common to scombrid fishes (mackerels, bonitos and tunas), which are known for their high swimming speed. It is hypothesized that these small fins could potentially affect propulsive performance. Here, we combine experimental and computational approaches to investigate the hydrodynamics of finlets in yellowfin tuna ( Thunnus albacares ) during steady swimming. High-speed videos were obtained to provide kinematic data on the in vivo motion of finlets. High-fidelity simulations were then carried out to examine the hydrodynamic performance and vortex dynamics of a biologically realistic multiple-finlet model with reconstructed kinematics. It was found that finlets undergo both heaving and pitching motion and are delayed in phase from anterior to posterior along the body. Simulation results show that finlets were drag producing and did not produce thrust. The interactions among finlets helped reduce total finlet drag by 21.5%. Pitching motions of finlets helped reduce the power consumed by finlets during swimming by 20.8% compared with non-pitching finlets. Moreover, the pitching finlets created constructive forces to facilitate posterior body flapping. Wake dynamics analysis revealed a unique vortex tube matrix structure and cross-flow streams redirected by the pitching finlets, which supports their hydrodynamic function in scombrid fishes. Limitations on modelling and the generality of results are also discussed. 
    more » « less
  4. The unique engulfment filtration strategy of microphagous rorqual whales has evolved relatively recently (<5 Ma) and exploits extreme predator/prey size ratios to overcome the maneuverability advantages of swarms of small prey, such as krill. Forage fish, in contrast, have been engaged in evolutionary arms races with their predators for more than 100 million years and have performance capabilities that suggest they should easily evade whale-sized predators, yet they are regularly hunted by some species of rorqual whales. To explore this phenomenon, we determined, in a laboratory setting, when individual anchovies initiated escape from virtually approaching whales, then used these results along with in situ humpback whale attack data to model how predator speed and engulfment timing affected capture rates. Anchovies were found to respond to approaching visual looming stimuli at expansion rates that give ample chance to escape from a sea lion-sized predator, but humpback whales could capture as much as 30–60% of a school at once because the increase in their apparent (visual) size does not cross their prey’s response threshold until after rapid jaw expansion. Humpback whales are, thus, incentivized to delay engulfment until they are very close to a prey school, even if this results in higher hydrodynamic drag. This potential exaptation of a microphagous filter feeding strategy for fish foraging enables humpback whales to achieve 7× the energetic efficiency (per lunge) of krill foraging, allowing for flexible foraging strategies that may underlie their ecological success in fluctuating oceanic conditions.

     
    more » « less
  5. Three-dimensional numerical simulations are carried out to study the hydrodynamic performance and flow features of a bio-inspired underwater propulsor. The propulsor is constituted by a passive pitching panel. The leading edge of the panel is prescribed under a periodic heaving motion while the panel pitches passively due to the employing of a stiffness-lumped torsional spring at the leading edge. Effects of the torsional spring stiffness have been put emphases on. A real-time tunable stiffness strategy is presented and employed in the study. We first study the passive pitching effects on the hydrodynamics and flow features of the panel using a series of constant stiffness and then we study the tunable stiffness effects using cosinusoidal curve based waveforms, in which the effects of phase difference (ϕ) between the stiffness profile and the oscillation motion and as well as the effects of stiffness fluctuation amplitude (Gk) are investigated, respectively. The stiffness profile beneficial for propulsion efficiency is further applied to cases with different oscillation amplitudes. A high-fidelity immersed boundary method based direct numerical simulation (DNS) solver is employed to acquire the fluid dynamics and to simulate the flow. The panel passive pitching motion is solved by coupling the DNS flow solver and the Euler rigid body dynamic equation. Results show that for the constant stiffness cases, the panel generates sinusoidal-like pitching motion, and in certain stiffness range, flexibility could benefit efficiency while holding some extent of stiffness could enhance the thrust. For the tunable stiffness cases, it is found that both the mean thrust and propulsive efficiency improved when the stiffness change is in-phase with the heaving motion (ϕ = 0). The largest mean thrust is found at ϕ = 120 degree. 
    more » « less