skip to main content


Title: Public perceptions of the health risks of extreme heat across US states, counties, and neighborhoods

Extreme heat is the leading weather-related cause of death in the United States. Many individuals, however, fail to perceive this risk, which will be exacerbated by global warming. Given that awareness of one’s physical and social vulnerability is a critical precursor to preparedness for extreme weather events, understanding Americans’ perceptions of heat risk and their geographic variability is essential for promoting adaptive behaviors during heat waves. Using a large original survey dataset of 9,217 respondents, we create and validate a model of Americans’ perceived risk to their health from extreme heat in all 50 US states, 3,142 counties, and 72,429 populated census tracts. States in warm climates (e.g., Texas, Nevada, and Hawaii) have some of the highest heat-risk perceptions, yet states in cooler climates often face greater health risks from heat. Likewise, places with older populations who have increased vulnerability to health effects of heat tend to have lower risk perceptions, putting them at even greater risk since lack of awareness is a barrier to adaptive responses. Poorer neighborhoods and those with larger minority populations generally have higher risk perceptions than wealthier neighborhoods with more white residents, consistent with vulnerability differences across these populations. Comprehensive models of extreme weather risks, exposure, and effects should take individual perceptions, which motivate behavior, into account. Understanding risk perceptions at fine spatial scales can also support targeting of communication and education initiatives to where heat adaptation efforts are most needed.

 
more » « less
NSF-PAR ID:
10087946
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
14
ISSN:
0027-8424
Page Range / eLocation ID:
p. 6743-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extreme heat events are one of the deadliest weather-related hazards in the United States and are increasing in frequency and severity as a result of anthropogenic greenhouse gas emissions. Further, some subpopulations may be more vulnerable than others because of social, economic, and political factors that create disparities in hazard impacts and responses. Vulnerability is also affected by risk perceptions, which can influence protective behaviors. In this study, we use national survey data to investigate the association of key sociodemographic factors with public risk perceptions of heatwaves. We find that risk perceptions are most associated with income, race/ethnicity, gender, and disability status. Age, an important predictor of heat mortality, had smaller associations with heat risk perceptions. Low-income, nonwhite, and disabled individuals tend to perceive themselves to be at greater risks from heatwaves than other subpopulations, corresponding to their elevated risk. Men have lower risk perceptions than women despite their higher mortality and morbidity from heat. This study helps to identify subpopulations in the United States who see themselves as at risk from extreme heat and can inform heat risk communication and other risk reduction practices. 
    more » « less
  2. Coastal communities are increasingly exposed to more intense and frequent hurricanes, accelerated sea-level rise, and prolonged tidal inundation, yet they are often a preferred retirement destination for older adults vulnerable to flooding and extreme weather events. The unique physical and psychosocial challenges of older population age 65 and over may affect their level of preparedness, capacity to cope with, and ability to respond and recover from a hazard event. Despite the clear vulnerabilities of older residents living in high-risk areas when compared to younger coastal populations, there is a lack of empirical research on the integrated flood risks to this population group in the coastal context. This paper provides a holistic assessment of this emerging problem along the U.S. East Coast by measuring the exposure of older population to sea level rise and storm surge in coastal counties. It further evaluates how age-related vulnerabilities differ between rural and urban settings using the case study approach and geospatial and statistical analysis the paper also conducts a review of scientific literature to identify gaps in the current understanding of health and well-being risks to aging populations in coastal communities. The results show that older populations are unevenly distributed along the U.S. East Coast with some states and counties having significantly higher percent of residents age 65 and older living along the shoreline. Many places with larger older populations have other attributes that further shape the vulnerability of this age group such as older housing stock, disabilities, and lower income and that often differ between rural and urban settings. Lastly, our study found that vast majority of research on aging in high-risk coastal locations has been conducted in relation to major disasters and almost none on the recurrent nuisance flooding that is already affecting many coastal communities. 
    more » « less
  3. Abstract The risks associated with extreme heat are increasing as heat waves become more frequent and severe across larger areas. As people begin to experience heat waves more often and in more places, how will individuals respond? Measuring experience with heat simply as exposure to extreme temperatures may not fully capture how people subjectively experience those temperatures or their varied impacts on human health. These impacts may also influence an individual’s response to heat and motivate risk-reduction behaviors. If subjectively experiencing negative health effects from extreme heat promotes protective actions, these effects could be used alongside temperature exposure to more accurately measure extreme heat experience and inform risk prevention and communication strategies according to local community needs. Using a multilevel regression model, this study analyzes georeferenced national survey data to assess whether Americans’ exposure to extreme heat and experience with its health effects are associated with self-reported protective behaviors. Subjective experience with heat-related health symptoms strongly predicted all reported protective behaviors while measured heat exposure had a much weaker influence. Risk perception was strongly associated with some behaviors. This study focuses particularly on the practice of checking on family, friends, and neighbors during a heat wave, which can be carried out by many people. For this behavior, age, race/ethnicity, gender, and income, along with subjective experience and risk perception, were important predictors. Results suggest that the subjective experience of extreme heat influences health-related behavioral responses and should therefore be considered when designing or improving local heat protection plans. 
    more » « less
  4. Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality. 
    more » « less
  5. Objective:

    Although extreme heat can impact the health of anyone, certain groups are disproportionately affected. In urban settings, cooling centers are intended to reduce heat exposure by providing air-conditioned spaces to the public. We examined the characteristics of populations living near cooling centers and how well they serve areas with high social vulnerability.

    Methods:

    We identified 1402 cooling centers in 81 US cities from publicly available sources and analyzed markers of urban heat and social vulnerability in relation to their locations. Within each city, we developed cooling center access areas, defined as the geographic area within a 0.5-mile walk from a center, and compared sociodemographic characteristics of populations living within versus outside the access areas. We analyzed results by city and geographic region to evaluate climate-relevant regional differences.

    Results:

    Access to cooling centers differed among cities, ranging from 0.01% (Atlanta, Georgia) to 63.2% (Washington, DC) of the population living within an access area. On average, cooling centers were in areas that had higher levels of social vulnerability, as measured by the number of people living in urban heat islands, annual household income below poverty, racial and ethnic minority status, low educational attainment, and high unemployment rate. However, access areas were less inclusive of adult populations aged ≥65 years than among populations aged <65 years.

    Conclusion:

    Given the large percentage of individuals without access to cooling centers and the anticipated increase in frequency and severity of extreme heat events, the current distribution of centers in the urban areas that we examined may be insufficient to protect individuals from the adverse health effects of extreme heat, particularly in the absence of additional measures to reduce risk.

     
    more » « less