skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluorescent nanoparticle sensors with tailor-made recognition units and proximate fluorescent reporter groups
The molecular recognition unit of a fluorescent sensor is its most cumbersome part to design and synthesize, but is key to the specificity of the sensor. Molecular imprinting within cross-linked micelles using easily synthesized modular templates allowed us to create analyte-specific binding sites with a nearby fluorescent probe. This strategy makes it straightforward to vary the recognition unit independent of the reporting unit, making the sensor potentially applicable to a wide range of molecular analytes.  more » « less
Award ID(s):
1708526
PAR ID:
10088070
Author(s) / Creator(s):
;
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
42
Issue:
12
ISSN:
1144-0546
Page Range / eLocation ID:
9377 to 9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The first near IR fluorescent probe for the chemoselective and enantioselective recognition of arginine in aqueous solution is reported in this work. This probe, made of a 1,1’‐binaphthyl‐based chiral aldehyde unit and a rhodamine‐based near IR chromophore, in combination with La3+exhibits highly chemoselective as well as enantioselective fluorescent enhancement with arginine at λ=764 nm upon excitation at λ=690 nm. Little or no fluorescent response is observed toward the chirality miss‐matched arginine enantiomer or other common amino acids and their enantiomers. This probe also allows visual discrimination of the arginine enantiomers because of its fast and distinct color change upon interaction with the substrate. 
    more » « less
  2. null (Ed.)
    The mesoporous nature of silica nanoparticles provides a novel platform for the development of ultrabright fluorescent particles, which have organic molecular fluorescent dyes physically encapsulated inside the silica pores. The close proximity of the dye molecules, which is possible without fluorescence quenching, gives an advantage of building sensors using FRET coupling between the encapsulated dye molecules. Here we present the use of this approach to demonstrate the assembly of ultrabright fluorescent ratiometric sensors capable of simultaneous acidity (pH) and temperature measurements. FRET pairs of the temperature-responsive, pH-sensitive and reference dyes are physically encapsulated inside the silica matrix of ~50 nm particles. We demonstrate that the particles can be used to measure both the temperature in the biologically relevant range (20 to 50 °C) and pH within 4 to 7 range with the error (mean absolute deviation) of 0.54 °C and 0.09, respectively. Stability of the sensor is demonstrated. The sensitivity of the sensor ranges within 0.2–3% °C−1 for the measurements of temperature and 2–6% pH−1 for acidity. 
    more » « less
  3. null (Ed.)
    A highly chemoselective as well as enantioselective fluorescent probe has been discovered for the recognition of the acidic amino acids, including glutamic acid and aspartic acid. This study has established a novel amino acid recognition mechanism by an aldehyde-based fluorescent probe. 
    more » « less
  4. Abstract Three BINOL‐based unsymmetric chiral dialdehydes, (S)‐4, (S)‐5, and (S)‐6, each containing a salicylaldehyde moiety and anortho‐,meta‐ orpara‐substituted benzaldehyde unit, are synthesized and used to react with the enantiomers of an unsymmetric chiral diamine, lysine. These reactions represent the first examples of regioselective as well as enantioselective reactions of an unsymmetric chiral dialdehyde with an unsymmetric chiral diamine to generate unsymmetric chiral macrocycles. The addition of Zn2+can further enhance the selectivity for the macrocycle formation. Compounds (S)‐4and (S)‐5are found to exhibit chemoselective and enantioselective fluorescent recognition of lysine in the presence of Zn2+
    more » « less
  5. null (Ed.)
    Natural and laboratory-guided evolution has created a rich diversity of fluorescent protein (FP)-based sensors for chloride (Cl − ). To date, such sensors have been limited to the Aequorea victoria green fluorescent protein (avGFP) family, and fusions with other FPs have unlocked ratiometric imaging applications. Recently, we identified the yellow fluorescent protein from jellyfish Phialidium sp. (phiYFP) as a fluorescent turn-on, self-ratiometric Cl − sensor. To elucidate its working mechanism as a rare example of a single FP with this capability, we tracked the excited-state dynamics of phiYFP using femtosecond transient absorption (fs-TA) spectroscopy and target analysis. The photoexcited neutral chromophore undergoes bifurcated pathways with the twisting-motion-induced nonradiative decay and barrierless excited-state proton transfer. The latter pathway yields a weakly fluorescent anionic intermediate , followed by the formation of a red-shifted fluorescent state that enables the ratiometric response on the tens of picoseconds timescale. The redshift results from the optimized π–π stacking between chromophore Y66 and nearby Y203, an ultrafast molecular event. The anion binding leads to an increase of the chromophore p K a and ESPT population, and the hindrance of conversion. The interplay between these two effects determines the turn-on fluorescence response to halides such as Cl − but turn-off response to other anions such as nitrate as governed by different binding affinities. These deep mechanistic insights lay the foundation for guiding the targeted engineering of phiYFP and its derivatives for ratiometric imaging of cellular chloride with high selectivity. 
    more » « less