skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemically fueled covalent crosslinking of polymer materials
Transiently crosslinked dynamic polymer networks are developed, using carbodiimide hydration to link carboxylic acids as anhydrides. From aqueous polymer solutions, non-equilibrium hydrogels are transiently formed, which dissolve upon anhydride hydrolysis. The materials can be refueled using a subsequent injection of carbodiimide. The gels exhibit higher storage moduli compared to transient supramolecular gels as a result of their covalent crosslinks.  more » « less
Award ID(s):
1749730
PAR ID:
10088290
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
55
Issue:
14
ISSN:
1359-7345
Page Range / eLocation ID:
2086 to 2089
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work examines the functional dependence of the efficiency of separation of oil−water emulsions on surfactant adsorption abilities of high surface area polymer gels. The work also develops an understanding of the factors and steps that are involved in emulsion separation processes using polymer gels. The work considers four polymer gels offering different surface energy values, namely, syndiotactic polystyrene (sPS), polyimide (PI), polyurea (PUA), and silica. The data reveal that surfactant adsorption abilities directly control the emulsion separation performance. The gels of sPS and PI destabilize the emulsions due to significant surfactant adsorption. The surfactant-lean oil droplets are then absorbed in the pores of sPS and PI gels due to the preferential wettability of the oil phase. The PUA and silica gels are more hydrophilic and show a lower surfactant adsorption ability. These gels cannot effectively remove the surfactant molecules from the emulsions, leading to a poor emulsion separation performance. The study uses simulation data to understand the adsorption characteristics of two poly(ethylene oxide)- poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants. The simulation results are used for the interpretation of emulsion separation performance by the gels. 
    more » « less
  2. Abstract Metal‐coordinated hydrogels can form a percolated network with transient bonds due to metal ions‐functional group coordination. Each metal ion can link with more than one ligand, leading to intricate speciation of bonding modes. While the mechanics of transient gels made with four‐arm polymers are often studied, less is known about how increasing the number of arms affects the modulus. Using shear rheology, the modulus of hydrogels prepared from four‐, six‐, and eight‐armed poly(ethylene glycols), functionalized with histidine ligands that complex with nickel (II) ions is measured. These gels have matched polymer wt.% and varied pH to compare their moduli. It is considered whether the modulus can be described by established polymer network models by calculating the speciation of metal‐coordinated cross‐links and then incorporating it into a phantom network prediction. This study finds that 1) increasing the number of polymer arms increases the modulus, 2) the phantom network allows reasonable modulus approximation for four‐arm and six‐arm gels, and 3) the modulus of eight‐arm gels exceeds the phantom network prediction. Since polymer cores act as chemical cross‐links and metal‐coordinated cross‐links form network strands, it is possible that increasing the number of metal‐coordinated linkages per molecule reinforces the chemical cross‐link at the polymer core. 
    more » « less
  3. Mitigating the attachment of microorganisms to polymer biomaterials is critical for preventing hospital-acquired infections. Two chemical strategies to mitigate fouling include fabricating fouling-resistant surfaces, which typically present hydrophilic polymers, such as polyethylene glycol (PEG), or creating fouling-release surfaces, which are generally hydrophobic featuring polydimethylsiloxane (PDMS). Despite the demonstrated promise of employing PEG or PDMS, amphiphilic PEG/PDMS copolymer materials remain understudied. Here, for the first time, we investigated if phase-separated amphiphilic copolymers confounded microbial adhesion. We used bottlebrush amphiphilic PEG/PDMS co-networks and homopolymer networks to study bacterial adhesion across a library of gels (ϕPEG = 0.00, 0.21, 0.40, 0.55, 0.80, and 1.00). Hydrated atomic force microscopy measurements revealed that most of the gels had low surface roughness, less than 5 nm, and an elastic modulus of ∼80 kPa. Interestingly, the surface roughness and elastic modulus of the ϕPEG = 0.40 gel were twice as high as those of the other gels due to the presence of crystalline domains, as confirmed using polarized optical microscopy on the hydrated gel. The interactions of these six well-characterized gels with bacteria were determined using Escherichia coli K12 MG1655 and Staphylococcus aureus SH1000. The attachment of both microbes decreased by at least 60% on all polymer gels versus the glass controls. S. aureus adhesion peaked on the ϕPEG = 0.40, likely due to its increased elastic modulus, consistent with previous literature demonstrating that modulus impacts microbial adhesion. These findings suggest that hydrophilic, hydrophobic, and amphiphilic biomaterials effectively resist the early attachment of Gram-negative and Gram-positive microorganisms, providing guidance for the design of next-generation antifouling surfaces. 
    more » « less
  4. Chemical reactions that mimic the function of ATP hydrolysis in biochemistry are of current interest in nonequilibrium systems chemistry. The formation of transient bonds from these reactions can drive molecular machines or generate materials with time-dependent properties. While the behavior of these systems can be complicated, the underlying chemistry is often simple: they are therefore potentially interesting topics for undergraduate introductory organic chemistry students, combining state-of-the-art advances in systems chemistry with straightforward reactions. Here, a teaching experiment has been developed that explores the transient assembly of benzoic acid derivatives driven by carbodiimide hydration. Working in teams, students examine the formation and decomposition of anhydrides from two benzoic acids using a carbodiimide “fuel”. The students examine classic reaction kinetics of anhydride hydrolysis using two independent methods, NMR and IR spectroscopies. They then explore how the amount of carbodiimide affects the lifetimes of precipitates of benzoic anhydride as a simple example of out-of-equilibrium self-assembly. 
    more » « less
  5. Di Chenna, Pablo H. (Ed.)
    Organogels have recently been considered as materials for transdermal drug delivery media, wherein their transport and mechanical properties are among the most important considerations. Transport through organogels has only recently been investigated and findings highlight an inextricable link between gels’ transport and mechanical properties based upon the formulated polymer concentration. Here, organogels composed of styrenic triblock copolymer and different aliphatic mineral oils, each with a unique dynamic viscosity, are characterized in terms of their quasi-static uniaxial mechanical behavior and the internal diffusion of two unique solute penetrants. Mechanical testing results indicate that variation of mineral oil viscosity does not affect gel mechanical behavior. This likely stems from negligible changes in the interactions between mineral oils and the block copolymer, which leads to consistent crosslinked network structure and chain entanglement (at a fixed polymer concentration). Conversely, results from diffusion experiments highlight that two penetrants—oleic acid (OA) and aggregated aerosol-OT (AOT)—diffuse through gels at a rate inversely proportional to mineral oil viscosity. The inverse dependence is theoretically supported by the hydrodynamic model of solute diffusion through gels. Collectively, our results show that organogel solvent variation can be used as a design parameter to tailor solute transport through gels while maintaining fixed mechanical properties. 
    more » « less