skip to main content


Title: On Relationships between Nonrecurving Western North Pacific Tropical Cyclones, the Madden–Julian Oscillation, and the East Asian Subtropical Jet

A 200-hPa zonal momentum budget is performed to examine the role that western North Pacific tropical cyclones (TCs) play in helping to organize intraseasonal extratropical circulation anomalies that occur with the Madden–Julian oscillation (MJO). Zonal wind is linearly decomposed into components that occur on MJO time scales (i.e., 20–100-day periods), as well as those that occur with lower and higher frequency. Dates during Northern Hemisphere fall that feature nonrecurving TCs within a search radius centered on a South China Sea grid point when the MJO is convectively active over the Maritime Continent and west Pacific warm pool are used to generate composites of relevant budget terms. These composites are then compared to others that are based on the full list of dates that feature a convectively active MJO in the same location during NH fall without regard for TC presence. Composite results highlight the primary momentum sources that guide the evolution of the NH extratropical zonal wind and associated mass field in each event set. TCs help to accelerate the East Asian subtropical jet that evolves with the MJO by modulating the high-frequency subtropical circulation over Southeast Asia. The phasing of this circulation with its underlying MJO time-scale component enables it to transfer momentum to the emerging subtropical jet. This momentum is integrated into the more slowly evolving flow and carried forward by other processes, which leads to the development of a westerly momentum surge along the subtropical jet that spans the length of the North Pacific Ocean.

 
more » « less
NSF-PAR ID:
10088307
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
3
ISSN:
0022-4928
Page Range / eLocation ID:
p. 893-917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The composite structure of the Madden–Julian oscillation (MJO) has long been known to feature pronounced Rossby gyres in the subtropical upper troposphere, whose existence can be interpreted as the forced response to convective heating anomalies in the presence of a subtropical westerly jet. The question of interest here is whether these forced gyre circulations have any subsequent effects on divergence patterns in the tropics and the Kelvin-mode component of the MJO. A nonlinear spherical shallow water model is used to investigate how the introduction of different background jet profiles affects the model’s steady-state response to an imposed MJO-like stationary thermal forcing. Results show that a stronger jet leads to a stronger Kelvin-mode response in the tropics up to a critical jet speed, along with stronger divergence anomalies in the vicinity of the forcing. To understand this behavior, additional calculations are performed in which a localized vorticity forcing is imposed in the extratropics, without any thermal forcing in the tropics. The response is once again seen to include pronounced equatorial Kelvin waves, provided the jet is of sufficient amplitude. A detailed analysis of the vorticity budget reveals that the zonal-mean zonal wind shear plays a key role in amplifying the Kelvin-mode divergent winds near the equator, with the effects of nonlinearities being of negligible importance. These results help to explain why the MJO tends to be strongest during boreal winter when the Indo-Pacific jet is typically at its strongest.

    Significance Statement

    The MJO is a planetary-scale convectively coupled equatorial disturbance that serves as a primary source of atmospheric predictability on intraseasonal time scales (30–90 days). Due to its dominance and spontaneous recurrence, the MJO has a significant global impact, influencing hurricanes in the tropics, storm tracks, and atmosphere blocking events in the midlatitudes, and even weather systems near the poles. Despite steady improvements in subseasonal-to-seasonal (S2S) forecast models, the MJO prediction skill has still not reached its maximum potential. The root of this challenge is partly due to our lack of understanding of how the MJO interacts with the background mean flow. In this work, we use a simple one-layer atmospheric model with idealized heating and vorticity sources to understand the impact of the subtropical jet on the MJO amplitude and its horizontal structure.

     
    more » « less
  2. Abstract The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets. 
    more » « less
  3. Abstract Observational evidence of two extratropical pathways to forcing tropical convective disturbances is documented through a statistical analysis of satellite-derived OLR and ERA5 reanalysis. The forcing mechanism and the resulting disturbances are found to strongly depend on the structure of the background zonal wind. Although Rossby wave propagation is prohibited in easterlies, modeling studies have shown that extratropical forcing can still excite equatorial waves through resonance between the tropics and extratropics. Here this “remote” forcing pathway is investigated for the first time in the context of convectively coupled Kelvin waves over the tropical Pacific during northern summer. The extratropical forcing is manifested by eddy momentum flux convergence that arises when extratropical eddies propagate into the subtropics and encounter their critical line. This nonlinear forcing has similar wavenumbers and frequencies with Kelvin waves and excites them by projecting onto their meridional eigenstructure in zonal wind, as a form of resonance. This resonance is also evidenced by a momentum budget analysis, which reveals the nonlinear forcing term is essential for maintenance of the waves, while the remaining linear terms are essential for propagation. In contrast, the “local” pathway of extratropical forcing entails the presence of a westerly duct during northern winter that permits Rossby waves to propagate into the equatorial east Pacific, while precluding any sort of resonance with Kelvin waves due to Doppler shifting effects. The intruding disturbances primarily excite tropical “cloud plumes” through quasigeostrophic forcing, while maintaining their extratropical nature. This study demonstrates the multiple roles of the extratropics in forcing in tropical circulations and illuminates how tropical–extratropical interactions and extratropical basic states can provide be a source of predictability at the S2S time scale. Significance Statement This study seeks to understand how circulations in the midlatitudes excite the weather systems in the tropics. Results show that the mechanisms, as well as the types of tropical weather systems excited, are strongly dependent on the mean large-scale wind structure. In particular, when the large-scale wind blows from east to west, a special type of eastward-moving tropical weather system, the Kelvin wave, is excited owing to its resonance with remote eastward-moving weather systems in the extratropics. On the contrary, when the average wind blows from west to east, midlatitude systems are observed to intrude into the lower latitudes and directly force tropical convection, the cloud plumes, while maintaining their extratropical nature. These results speak to how the midlatitudes can excite distinct types of tropical weather systems under different climatological wind regimes. Understanding these tropical weather systems and their interactions with the midlatitudes may ultimately help to improve predictions of weather beyond 2 weeks. 
    more » « less
  4. Abstract Cross-equatorial ocean heat transport (OHT) changes have been found to damp meridional shifts of the intertropical convergence zone (ITCZ) induced by hemispheric asymmetries in radiative forcing. Zonal-mean energy transport theories and idealized model simulations have suggested that these OHT changes occur primarily due to wind-driven changes in the Indo-Pacific’s shallow subtropical cells (STCs) and buoyancy-driven changes in the deep Atlantic meridional overturning circulation (AMOC). In this study we explore the partitioning between buoyancy and momentum forcing in the ocean’s response. We adjust the top-of-atmosphere solar forcing to cool the Northern Hemisphere (NH) extratropics in a novel set of comprehensive climate model simulations designed to isolate buoyancy-forced and momentum-forced changes. In this case of NH high-latitude forcing, we confirm that buoyancy-driven changes in the AMOC dominate in the Atlantic. However, in contrast with prior expectations, buoyancy-driven changes in the STCs are the primary driver of the heat transport changes in the Indo-Pacific. We find that buoyancy-forced Indo-Pacific STC changes transport nearly 4 times the amount of heat across the equator as the shallower wind-driven STC changes. This buoyancy-forced STC response arises from extratropical density perturbations that are amplified by the low cloud feedback and communicated to the tropics by the ventilated thermocline. While the ocean’s specific response is dependent on the forcing scheme, our results suggest that partitioning the ocean’s total response to energy perturbations into buoyancy and momentum forcing provides basin-specific insight into key aspects of how the ocean damps ITCZ migrations that previous zonal-mean frameworks omit. 
    more » « less
  5. Cool-season occurrences of blocks, extratropical cyclones that undergo explosive cyclogenesis, and tropical cyclones (TCs) that undergo extratropical transition (ET) from 1980 to 2015 are analyzed using the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2, dataset. These synoptic events are first examined in a climatological analysis that includes identifying consecutive synoptic events, namely, blocks that follow bombs or ET events as well as extratropical cyclones that follow ET events. These synoptic events are then analyzed with respect to three tropical modes of variability: the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). The QBO was considered from both a momentum and thermal point of view, using the equatorial 30-hPa zonal-mean wind and the equatorial zonal wind shear between 30 and 50 hPa, respectively. The results show that in the seven days prior to cool-season blocks and ET events, there is a statistically significant frequency minimum in MJO phases 7 and 3, respectively. With respect to the QBO, there is a statistically significant frequency maximum in neutral QBO conditions during bomb onset and a frequency minimum during ET onset. When stratifying bombs by latitude, there is a significant reduction in Arctic (i.e., poleward of 55°N) bomb onset during easterly QBO conditions. The results show that both tropospheric and stratospheric tropical modes of variability can modulate the frequency of extratropical synoptic events to a similar degree.

     
    more » « less