skip to main content


Title: Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery

The formation of multivesicular endosomes (MVEs) mediates the turnover of numerous integral membrane proteins and has been implicated in the down-regulation of growth factor signaling, thereby exhibiting properties of a tumor suppressor. The endosomal sorting complex required for transport (ESCRT) machinery plays a key role in MVE biogenesis, enabling cargo selection and intralumenal vesicle (ILV) budding. However, the spatiotemporal pattern of endogenous ESCRT complex assembly and disassembly in mammalian cells remains poorly defined. By combining CRISPR/Cas9-mediated genome editing and live cell imaging using lattice light sheet microscopy (LLSM), we determined the native dynamics of both early- and late-acting ESCRT components at MVEs under multiple growth conditions. Specifically, our data indicate that ESCRT-0 accumulates quickly on endosomes, typically in less than 30 seconds, and its levels oscillate in a manner dependent on the downstream recruitment of ESCRT-I. Similarly, levels of the ESCRT-I complex also fluctuate on endosomes, but its average residency time is more than fivefold shorter compared with ESCRT-0. Vps4 accumulation is the most transient, however, suggesting that the completion of ILV formation occurs rapidly. Upon addition of epidermal growth factor (EGF), both ESCRT-I and Vps4 are retained at endosomes for dramatically extended periods of time, while ESCRT-0 dynamics are only modestly affected. Our findings are consistent with a model in which growth factor stimulation stabilizes late-acting components of the ESCRT machinery at endosomes to accelerate the rate of ILV biogenesis and attenuate signal transduction initiated by receptor activation.

 
more » « less
NSF-PAR ID:
10088611
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
14
ISSN:
0027-8424
Page Range / eLocation ID:
p. 6858-6867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation of multivesicular endosomes (MVEs) mediates the turnover of numerous integral membrane proteins and has been implicated in the down-regulation of growth factor signaling, thereby exhibiting properties of a tumor suppressor. The endosomal sorting complex required for transport (ESCRT) machinery plays a key role in MVE biogenesis, enabling cargo selection and intralumenal vesicle (ILV) budding. However, the spatiotemporal pattern of endogenous ESCRT complex assembly and disassembly in mammalian cells remains poorly defined. By combining CRISPR/Cas9-mediated genome editing and live cell imaging using lattice light sheet microscopy (LLSM), we determined the native dynamics of both early- and late-acting ESCRT components at MVEs under multiple growth conditions. Specifically, our data indicate that ESCRT-0 accumulates quickly on endosomes, typically in less than 30 seconds, and its levels oscillate in a manner dependent on the downstream recruitment of ESCRT-I. Similarly, levels of the ESCRT-I complex also fluctuate on endosomes, but its average residency time is more than fivefold shorter compared with ESCRT-0. Vps4 accumulation is the most transient, however, suggesting that the completion of ILV formation occurs rapidly. Upon addition of epidermal growth factor (EGF), both ESCRT-I and Vps4 are retained at endosomes for dramatically extended periods of time, while ESCRT-0 dynamics are only modestly affected. Our findings are consistent with a model in which growth factor stimulation stabilizes late-acting components of the ESCRT machinery at endosomes to accelerate the rate of ILV biogenesis and attenuate signal transduction initiated by receptor activation. 
    more » « less
  2. Endosomal sorting complexes required for transport (ESCRT-0, -I, -II, -III) execute cargo sorting and intralumenal vesicle (ILV) formation during conversion of endosomes to multivesicular bodies (MVBs). The AAA-ATPase Vps4 regulates the ESCRT-III polymer to facilitate membrane remodeling and ILV scission during MVB biogenesis. Here, we show that the conserved V domain of ESCRT-associated protein Bro1 (the yeast homologue of mammalian proteins ALIX and HD-PTP) directly stimulates Vps4. This activity is required for MVB cargo sorting. Furthermore, the Bro1 V domain alone supports Vps4/ESCRT–driven ILV formation in vivo without efficient MVB cargo sorting. These results reveal a novel activity of the V domains of Bro1 homologues in licensing ESCRT-III–dependent ILV formation and suggest a role in coordinating cargo sorting with membrane remodeling during MVB sorting. Moreover, ubiquitin binding enhances V domain stimulation of Vps4 to promote ILV formation via the Bro1–Vps4–ESCRT-III axis, uncovering a novel role for ubiquitin during MVB biogenesis in addition to facilitating cargo recognition.

     
    more » « less
  3. ABSTRACT The endosomal sorting complex required for transport (ESCRT) machinery is necessary for budding of many enveloped viruses. Recently, it was demonstrated that Vps4, the key regulator for recycling of the ESCRT-III complex, is required for efficient infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, ESCRT assembly, regulation, and function are complex, and little is known regarding the details of participation of specific ESCRT complexes in AcMNPV infection. In this study, the core components of ESCRT-I (Tsg101 and Vps28) and ESCRT-III (Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60) were cloned from Spodoptera frugiperda . Using a viral complementation system and RNA interference (RNAi) assays, we found that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. In cells knocking down or overexpressing dominant negative (DN) forms of the components of ESCRT-I and ESCRT-III complexes, entering virions were partially trapped within the cytosol. To examine only egress, cells were transfected with the double-stranded RNA (dsRNA) targeting an individual ESCRT-I or ESCRT-III gene and viral bacmid DNA or viral bacmid DNA that expressed DN forms of ESCRT-I and ESCRT-III components. We found that ESCRT-III components (but not ESCRT-I components) are required for efficient nuclear egress of progeny nucleocapsids. In addition, we found that several baculovirus core or conserved proteins (Ac11, Ac76, Ac78, GP41, Ac93, Ac103, Ac142, and Ac146) interact with Vps4 and components of ESCRT-III. We propose that these viral proteins may form an “egress complex” that is involved in recruiting ESCRT-III components to a virus egress domain on the nuclear membrane. IMPORTANCE The ESCRT system is hijacked by many enveloped viruses to mediate budding and release. Recently, it was found that Vps4, the key regulator of the cellular ESCRT machinery, is necessary for efficient entry and egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, little is known about the roles of specific ESCRT complexes in AcMNPV infection. In this study, we demonstrated that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. The components of ESCRT-III (but not ESCRT-I) are also necessary for efficient nuclear egress of progeny nucleocapsids. Several baculovirus core or conserved proteins were found to interact with Vps4 and components of ESCRT-III, and these interactions may suggest the formation of an “egress complex” involved in the nuclear release or transport of viral nucleocapsids. 
    more » « less
  4. Abstract

    ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT‐III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP‐1. IST1 is also important for export of mannose 6‐phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain‐containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin‐containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live‐cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.

     
    more » « less
  5. Abstract

    Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin‐mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin‐associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N‐terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME‐deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony‐sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations inVPS4led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)‐dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion ofVPS4from anend3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin‐independent endocytosis pathway rescued 4Δ+ENTHvps4Δ cells. Loss of Vps4 from an otherwise wild‐type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1‐dependent recycling of internalized protein to the cell surface. Additionally,vps4Δrcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT‐dependent trafficking on endocytic recycling and the PM.

     
    more » « less