skip to main content


Title: A minimal-length approach unifies rigidity in underconstrained materials

We present an approach to understand geometric-incompatibility–induced rigidity in underconstrained materials, including subisostatic 2D spring networks and 2D and 3D vertex models for dense biological tissues. We show that in all these models a geometric criterion, represented by a minimal length¯min, determines the onset of prestresses and rigidity. This allows us to predict not only the correct scalings for the elastic material properties, but also the precise magnitudes for bulk modulus and shear modulus discontinuities at the rigidity transition as well as the magnitude of the Poynting effect. We also predict from first principles that the ratio of the excess shear modulus to the shear stress should be inversely proportional to the critical strain with a prefactor of 3. We propose that this factor of 3 is a general hallmark of geometrically induced rigidity in underconstrained materials and could be used to distinguish this effect from nonlinear mechanics of single components in experiments. Finally, our results may lay important foundations for ways to estimate¯minfrom measurements of local geometric structure and thus help develop methods to characterize large-scale mechanical properties from imaging data.

 
more » « less
NSF-PAR ID:
10088612
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
14
ISSN:
0027-8424
Page Range / eLocation ID:
p. 6560-6568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  2. Abstract

    We present new empirical infrared period–luminosity–metallicity (PLZ) and period–Wesenheit–metallicity (PWZ) relations for RR Lyae based on the latest Gaia Early Data Release 3 (EDR3) parallaxes. The relations are provided in the Wide-field Infrared Survey Explorer (WISE) W1 and W2 bands, as well as in the W(W1,V− W1) and W(W2,V− W2) Wesenheit magnitudes. The relations are calibrated using a very large sample of Galactic halo field RR Lyrae stars with homogeneous spectroscopic [Fe/H] abundances (over 1000 stars in the W1 band), covering a broad range of metallicities (−2.5 ≲ [Fe/H] ≲ 0.0). We test the performance of our PLZ and PWZ relations by determining the distance moduli of both galactic and extragalactic stellar associations: the Sculptor dwarf spheroidal galaxy in the Local Group (findingμ¯0=19.47±0.06), the Galactic globular clusters M4 (μ¯0=11.16±0.05), and the Reticulum globular cluster in the Large Magellanic Cloud (μ¯0=18.23±0.06). The distance moduli determined through all our relations are internally self-consistent (within ≲0.05 mag) but are systematically smaller (by ∼2–3σ) than previous literature measurements taken from a variety of methods/anchors. However, a comparison with similar recent RR Lyrae empirical relations anchored with EDR3 likewise shows, to varying extents, a systematically smaller distance modulus for PLZ/PWZ RR Lyrae relations.

     
    more » « less
  3. We present exact results that give insight into how interactions lead to transport and superconductivity in a flat band where the electrons have no kinetic energy. We obtain bounds for the optical spectral weight for flat-band superconductors that lead to upper bounds for the superfluid stiffness and the two-dimensional (2D)Tc. We focus on on-site attraction|U|on the Lieb lattice with trivial flat bands and on the π-flux model with topological flat bands. For trivial flat bands, the low-energy optical spectral weightD̃lowñ|U|Ω/2withñ=minn,2n, where n is the flat-band density and Ω is the Marzari–Vanderbilt spread of the Wannier functions (WFs). We also obtain a lower bound involving the quantum metric. For topological flat bands, with an obstruction to localized WFs respecting all symmetries, we again obtain an upper bound forD̃lowlinear in|U|. We discuss the insights obtained from our bounds by comparing them with mean-field and quantum Monte Carlo results.

     
    more » « less
  4. Abstract

    While it is well known that cosmic rays (CRs) can gain energy from turbulence via second-order Fermi acceleration, how this energy transfer affects the turbulent cascade remains largely unexplored. Here, we show that damping and steepening of the compressive turbulent power spectrum are expected once the damping timetdampρv2/ĖCRECR1becomes comparable to the turbulent cascade time. Magnetohydrodynamic simulations of stirred compressive turbulence in a gas-CR fluid with diffusive CR transport show clear imprints of CR-induced damping, saturating atĖCRϵ˜, whereϵ˜is the turbulent energy input rate. In that case, almost all of the energy in large-scale motions is absorbed by CRs and does not cascade down to grid scale. Through a Hodge–Helmholtz decomposition, we confirm that purely compressive forcing can generate significant solenoidal motions, and we find preferential CR damping of the compressive component in simulations with diffusion and streaming, rendering small-scale turbulence largely solenoidal, with implications for thermal instability and proposed resonant scattering ofE≳ 300 GeV CRs by fast modes. When CR transport is streaming dominated, CRs also damp large-scale motions, with kinetic energy reduced by up to 1 order of magnitude in realisticECREgscenarios, but turbulence (with a reduced amplitude) still cascades down to small scales with the same power spectrum. Such large-scale damping implies that turbulent velocities obtained from the observed velocity dispersion may significantly underestimate turbulent forcing rates, i.e.,ϵ˜ρv3/L.

     
    more » « less
  5. Abstract

    The polluted white dwarf (WD) system SDSS J122859.93+104032.9 (SDSS J1228) shows variable emission features interpreted as originating from a solid core fragment held together against tidal forces by its own internal strength, orbiting within its surrounding debris disk. Estimating the size of this orbiting solid body requires modeling the accretion rate of the polluting material that is observed mixing into the WD surface. That material is supplied via sublimation from the surface of the orbiting solid body. The sublimation rate can be estimated as a simple function of the surface area of the solid body and the incident flux from the nearby hot WD. On the other hand, estimating the accretion rate requires detailed modeling of the surface structure and mixing in the accreting WD. In this work, we present MESA WD models for SDSS J1228 that account for the thermohaline instability and mixing in addition to heavy element sedimentation to constrain accurately the sublimation and accretion rate necessary to supply the observed pollution. We derive a total accretion rate ofṀacc=1.8×1011gs1, several orders of magnitude higher than theṀacc=5.6×108gs1estimate obtained in earlier efforts. The larger mass accretion rate implies that the minimum estimated radius of the orbiting solid body isrmin= 72 km, which, although significantly larger than prior estimates, still lies within the upper bounds (a few hundred kilometers) for which the internal strength could no longer withstand the tidal forces from the gravity of the WD.

     
    more » « less