skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dehn functions and Hölder extensions in asymptotic cones
Abstract The Dehn function measures the area of minimal discs that fill closed curves in a space; it is an important invariant in analysis, geometry, and geometric group theory. There are several equivalent ways to define the Dehn function, varying according to the type of disc used. In this paper, we introduce a new definition of the Dehn function and use it to prove several theorems. First, we generalize the quasi-isometry invariance of the Dehn function to a broad class of spaces. Second, we prove Hölder extension properties for spaces with quadratic Dehn function and their asymptotic cones. Finally, we show that ultralimits and asymptotic cones of spaces with quadratic Dehn function also have quadratic Dehn function. The proofs of our results rely on recent existence and regularity results for area-minimizing Sobolev mappings in metric spaces.  more » « less
Award ID(s):
1612061
PAR ID:
10088717
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
Volume:
0
Issue:
0
ISSN:
0075-4102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove two compactness results for function spaces with finite Dirichlet energy of half‐space nonlocal gradients. In each of these results, we provide sufficient conditions on a sequence of kernel functions that guarantee the asymptotic compact embedding of the associated nonlocal function spaces into the class of square‐integrable functions. Moreover, we will demonstrate that the sequence of nonlocal function spaces converges in an appropriate sense to a limiting function space. As an application, we prove uniform Poincaré‐type inequalities for sequence of half‐space gradient operators. We also apply the compactness result to demonstrate the convergence of appropriately parameterized nonlocal heterogeneous anisotropic diffusion problems. We will construct asymptotically compatible schemes for these type of problems. Another application concerns the convergence and robust discretization of a nonlocal optimal control problem. 
    more » « less
  2. null (Ed.)
    We construct a finitely presented group with quadratic Dehn function and undecidable conjugacy problem. This solves Rips’ problem formulated in 1994. 
    more » « less
  3. — This paper proposes a method for certifying the local asymptotic stability of a given nonlinear Ordinary Differential Equation (ODE) by using Sum-of-Squares (SOS) programming to search for a partially quadratic Lyapunov Function (LF). The proposed method is particularly well suited to the stability analysis of ODEs with high dimensional state spaces. This is due to the fact that partially quadratic LFs are parametrized by fewer decision variables when compared with general SOS LFs. The main contribution of this paper is using the Center Manifold Theorem to show that partially quadratic LFs that certify the local asymptotic stability of a given ODE exist under certain conditions. 
    more » « less
  4. Abstract This paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces. 
    more » « less
  5. Abstract We prove that all rational slopes are characterizing for the knot , except possibly for positive integers. Along the way, we classify the Dehn surgeries on knots in that produce the Brieskorn sphere , and we study knots on which large integral surgeries are almost L‐spaces. 
    more » « less