A self-adaptive system (SAS) can reconfigure at run time in response to uncertainty and/or adversity to continually deliver an acceptable level of service. An SAS can experience uncertainty during execution in terms of environmental conditions for which it was not explicitly designed as well as unanticipated combinations of system parameters that result from a self-reconfiguration or misunderstood requirements. Run-time testing provides assurance that an SAS continually behaves as it was designed even as the system reconfigures and the environment changes. Moreover, introducing adaptive capabilities via lightweight evolutionary algorithms into a run-time testing framework can enable an SAS to effectively update its test cases in response to uncertainty alongside the SAS's adaptation engine while still maintaining assurance that requirements are being satisfied. However, the impact of the evolutionary parameters that configure the search process for run-time testing may have a significant impact on test results. Therefore, this paper provides an empirical study that focuses on the mutation parameter that guides online evolution as applied to a run-time testing framework, in the context of an SAS.
more »
« less
Automated Optimization of Weighted Non-functional Objectives in Self-adaptive Systems
A self-adaptive system (SAS) can reconfigure at run time in response to adverse combinations of system and environmental conditions in order to continuously satisfy its requirements. Moreover, SASs are subject to cross-cutting non-functional requirements (NFRs), such as performance, security, and usability, that collectively characterize how functional requirements (FRs) are to be satisfied. In many cases, the trigger for adapting an SAS may be due to a violation of one or more NFRs. For a given NFR, different combinations of hierarchically-organized FRs may yield varying degrees of satisfaction (i.e., satisficement). This paper presents Providentia, a search-based technique to optimize NFR satisficement when subjected to various sources of uncertainty (e.g., environment, interactions between system elements, etc.). Providentia
searches for optimal combinations of FRs that, when considered with different subgoal decompositions and/or differential weights, provide optimal satisficement of NFR objectives. Experimental results suggest that using an SAS goal model enhanced with search-based optimization significantly improves system performance when compared with manually and randomly-generated weights and subgoals.
more »
« less
- Award ID(s):
- 1657061
- NSF-PAR ID:
- 10088802
- Date Published:
- Journal Name:
- Proceedings of the 10th Symposium on Search-Based Software Engineering (SSBSE)
- Page Range / eLocation ID:
- 182--197
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Axiomatic Design (AD) provides a powerful thinking framework for solving complex engineering problems through the concept of design domains and diligent mapping and decomposition between functional and physical domains. Despite this utility, AD is yet to be implemented for widespread use by design practitioners solving real world problems in industry and exists primarily in the realm of academia. This is due, in part, to a high level of design expertise and familiarity with its methodology required to apply the AD approach effectively. It is difficult to correctly identify, extract, and abstract top-level functional requirements (FRs) based on early-stage design research. Furthermore, guiding early-stage design by striving to maintain functional independence, the first Axiom, is difficult at a systems level without explicit methods of quantifying the relationship between high-level FRs and design parameters (DPs). To address these challenges, Artificial Intelligence (AI) methods, specifically in deep learning (DL) assisted Natural Language Processing (NLP), have been applied to represent design knowledge for machines to understand, and, following AD principles, support the practice of human designers. NLP-based question-answering is demonstrated to automate early-stage identification of FRs and to assist design decomposition by recursively mapping and traversing down along the FR-DP hierarchical structure. Functional coupling analysis could then be conducted with vectorized FRs and DPs from NLP-based language embeddings. This paper presents a framework for how AI can be applied to design based on the principles of AD, which will enable a virtual design assistant system based on both human and machine intelligence.more » « less
-
As part of its ongoing efforts to meet the increased spectrum demand, the Federal Communications Commission (FCC) has recently opened up 150 MHz in the 3.5 GHz band for shared wireless broadband use. Access and operations in this band, aka Citizens Broadband Radio Service (CBRS), will be managed by a dynamic spectrum access system (SAS) to enable seamless spectrum sharing between secondary users (SU s) and incumbent users. Despite its benefits, SAS’s design requirements, as set by FCC, present privacy risks to SU s, merely because SU s are required to share sensitive operational information (e.g., location, identity, spectrum usage) with SAS to be able to learn about spectrum availability in their vicinity. In this paper, we propose TrustSAS, a trustworthy framework for SAS that synergizes state-of-the-art cryptographic techniques with blockchain technology in an innovative way to address these privacy issues while complying with FCC’s regulatory design requirements. We analyze the security of our framework and evaluate its performance through analysis, simulation and experimentation. We show that TrustSAS can offer high security guarantees with reasonable overhead, making it an ideal solution for addressing SU s’ privacy issues in an operational SAS environment.more » « less
-
To facilitate dynamic spectrum sharing, the FCC has designated certified SAS administrators to implement their own spectrum access systems (SASs) that manage the shared spectrum usage in the novel CBRS band. As a premise, different SAS servers must conduct periodic inter-SAS coordination to synchronize service states and avoid allocation conflicts. However, SAS servers may inevitably stop service for regular upgrades, crash down, or even perform maliciously that deviate from the normal routines, posing a fundamental operation security problem — the system shall be robust against these faults to guarantee secure and efficient spectrum sharing service. Unfortunately, the incumbent inter-SAS coordination mechanism, CPAS, is prone to SAS failures and does not support real-time allocation. Recent proposals that rely on blockchain smart contracts or state machine replication mechanisms to realize fault-tolerant inter-SAS coordination require all SASs to follow a unified allocation algorithm. They however face performance bottlenecks and cannot accommodate the current fact that different SASs hold their own proprietary allocation algorithms. In this work, we propose TriSAS—a novel inter-SAS coordination mechanism to facilitate secure, efficient, and dependable spectrum allocation that is fully compatible with the existing SAS infrastructure. TriSAS decomposes the coordination process into two phases including input synchronization and decision finalization. The firstphase ensures participants share a common input set while the second one fulfills a fair and verifiable spectrum allocation selec- tion, which is generated efficiently via SAS proposers’ proprietary allocation algorithms and evaluated by a customized designed allocation evaluation algorithm (AEA), in the face of no more than one-third of malicious participants. We implemented a prototype of TriSAS on the AWS cloud computing platform and evaluated its throughput and latency performance. The results show that TriSAS achieves high transaction throughput and low latency under various practical settings.more » « less
-
Dynamic Spectrum Access (DSA) is a promising solution to alleviate spectrum crowding. However, geolocation database-driven spectrum access system (SAS) presents privacy risks, as sensitive Incumbent User (IU) operation parameters are required to be stored by SAS in order to perform spectrum assignments properly. These sensitive operation parameters may potentially be compromised if SAS is the target of a cyber attack or SU inference attack. In this paper, we propose a novel privacy-preserving SAS-based DSA framework, Suspicion Zone SAS (SZ-SAS). This is the first framework which protects against both the scenario of inference attacks in an area with sparsely distributed IUs and the scenario of untrusted or compromised SAS. Evaluation results show SZ-SAS is capable of utilizing compatible obfuscation schemes to prevent the SU inference attack, while operating using only homomorphically encrypted IU operation parameters.more » « less