skip to main content


Title: Deep Convective Organization, Moisture Vertical Structure, and Convective Transition Using Deep-Inflow Mixing

It is an open question whether an integrated measure of buoyancy can yield a strong relation to precipitation across tropical land and ocean, across the seasonal and diurnal cycles, and for varying degrees of convective organization. Building on previous work, entraining plume buoyancy calculations reveal that differences in convective onset as a function of column water vapor (CWV) over land and ocean, as well as seasonally and diurnally over land, are largely due to variability in the contribution of lower-tropospheric humidity to the total column moisture. Over land, the relationship between deep convection and lower-free-tropospheric moisture is robust across all seasons and times of day, whereas the relation to boundary layer moisture is robust for the daytime only. Using S-band radar, these transition statistics are examined separately for mesoscale and smaller-scale convection. The probability of observing mesoscale convective systems sharply increases as a function of lower-free-tropospheric humidity. The consistency of this with buoyancy-based parameterization is examined for several mixing formulations. Mixing corresponding to deep inflow of environmental air into a plume that grows with height, which incorporates nearly equal weighting of boundary layer and free-tropospheric air, yields buoyancies consistent with the observed onset of deep convection across the seasonal and diurnal cycles in the Amazon. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for smaller-scale convection.

 
more » « less
NSF-PAR ID:
10088947
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
4
ISSN:
0022-4928
Page Range / eLocation ID:
p. 965-987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Using multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale convective system (MCS) precipitation intensity P max , environmental moisture, large-scale vertical velocity, and system radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and P max emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS P max increases sharply with increasing boundary layer and lower free tropospheric (LFT) moisture, with the highest P max values originating from MCSs in environments exhibiting a peak in LFT moisture near 750 hPa. MCS P max exhibits strikingly similar behavior as a function of water vapor among tropical land and ocean regions. Yet, while the moisture– P max relationship depends strongly on mean tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land. Other P max -dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity. Larger systems typically contain wider convective cores and higher P max , consistent with increased protection from dilution due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally supports greater precipitation production. Last, temporal lead–lag analysis suggests that anomalous moisture in the lower–middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming. 
    more » « less
  2. Abstract

    This study synthesizes the results of 13 high-resolution simulations of deep convective updrafts forming over idealized terrain using environments observed during the RELAMPAGO and CACTI field projects. Using composite soundings from multiple observed cases, and variations upon them, we explore the sensitivity of updraft properties (e.g., size, buoyancy, and vertical pressure gradient forces) to influences of environmental relative humidity, wind shear, and mesoscale orographic forcing that support or suppress deep convection initiation (CI). Emphasis is placed on differentiating physical processes affecting the development of updrafts (e.g., entrainment-driven dilution of updrafts) in environments typifying observed successful and null (i.e., no CI despite affirmative operational forecasts) CI events. Thermally induced mesoscale orographic lift favors the production of deep updrafts originating from ∼1- to 2-km-wide boundary layer thermals. Simulations without terrain forcing required much larger (∼5-km-wide) thermals to yield precipitating convection. CI outcome was quite sensitive to environmental relative humidity; updrafts with increased buoyancy, depth, and intensity thrived in otherwise inhospitable environments by simply increasing the free-tropospheric relative humidity. This implicates the entrainment of free-tropospheric air into updrafts as a prominent governor of CI, consistent with previous studies. Sensitivity of CI to the environmental wind is manifested by 1) low-level flow affecting the strength and depth of mesoscale convergence along the terrain, and 2) clouds encountering updraft-suppressing pressure gradient forces while interacting with vertical wind shear in the free troposphere. Among the ensemble of thermals occurring in each simulation, the widest deep updrafts in each simulation were the most sensitive to environmental influences.

     
    more » « less
  3. Simple process models and complex climate models are remarkably sensitive to the time scale of convective adjustment τ, but this parameter remains poorly constrained and understood. This study uses the linear-range slope of a semiempirical relationship between precipitation and a lower-free-tropospheric buoyancy measure BL. The BLmeasure is a function of layer-averaged moist enthalpy in the boundary layer (150-hPa-thick layer above surface), and temperature and moisture in the lower free troposphere (boundary layer top to 500 hPa). Sensitivity parameters with units of time quantify the BLresponse to its component perturbations. In moist enthalpy units, BLis more sensitive to temperature than equivalent moisture perturbations. However, column-integrated moist static energy conservation ensures that temperature and moisture are equally altered during the adjustment process. Multiple adjusted states with different temperature–moisture combinations exist; the BLsensitivity parameters govern the relationship between adjusted states, and also combine to yield a time scale of convective adjustment ~2 h. This value is comparable to τ values used in cumulus parameterization closures. Disparities in previously reported values of τ are attributed to the neglect of the temperature contribution to precipitation, and to averaging operations that include data from both precipitating and nonprecipitating regimes. A stochastic model of tropical convection demonstrates how either averaging operations or neglected environmental influences on precipitation can yield τ estimates longer than the true τ value built into the model. The analysis here culminates in construction of a precipitation closure with both moisture and temperature adjustment ( q– T closure), suitable for use in both linearized and nonlinear, intermediate-complexity models.

     
    more » « less
  4. Some of the highest summer monsoon rainfall in South Asia falls on the windward slopes of the Western Ghats mountains on India's west coast and offshore over the eastern Arabian Sea. Understanding of the processes determining the spatial distribution and temporal variability of this region remains incomplete. In this paper, new Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) aircraft and ground‐based measurements of the summer monsoon over the Western Ghats and upstream of them are presented and placed within the context of remote‐sensing observations and reanalysis. The transition from widespread rainfall over the eastern Arabian Sea to rainfall over the Western Ghats is documented in high spatial and temporal resolution. Heavy rainfall offshore during the campaign was associated primarily with mid‐tropospheric humidity, secondarily with sea surface temperature, and only weakly with orographic blocking. A mid‐tropospheric dry intrusion suppressed deep convection offshore in the latter half of the campaign, allowing the build‐up of low‐level humidity in the onshore flow and enhancing rainfall over the mountains. Rainfall on the lee side of the Western Ghats occurred during the latter half of the campaign in association with enhanced mesoscale easterly upslope flow. Diurnal cycles in rainfall offshore (maximum in the morning) and on the mountains (maximum in the afternoon) were observed. Considerable zonal and temporal variability was seen in the offshore boundary layer, suggesting the presence of convective downdraughts and cold pools. Persistent drying of the subcloud mixed layer several hundred kilometres off the coast was observed, suggesting strong mixing between the boundary layer and the free troposphere. These observations provide quantitative targets to test models and suggest hypotheses on the physical mechanisms determining the distribution and variability in rainfall in the Western Ghats region.

     
    more » « less
  5. Abstract

    This study examines two factors impacting initiation of moist deep convection: free-tropospheric environmental relative humidity (ϕE) and horizontal scale of subcloud ascent (Rsub), the latter exerting a dominant control on cumulus cloud width. A simple theoretical model is used to formulate a “scale selection” hypothesis: that a minimumRsubis required for moist convection to go deep, and that this minimum scale decreases with increasingϕE. Specifically, the ratio ofto saturation deficit (1 −ϕE) must exceed a certain threshold value that depends on cloud-layer environmental lapse rate. Idealized, large-eddy simulations of moist convection forced by horizontally varying surface fluxes show strong sensitivity of maximum cumulus height to bothϕEandRsubconsistent with the hypothesis. IncreasingRsubby only 300–400 m can lead to a large increase (>5 km) in cloud height. A passive tracer analysis shows that the bulk fractional entrainment rate decreases rapidly withRsubbut depends little onϕE. However, buoyancy dilution increases as eitherRsuborϕEdecreases; buoyancy above the level of free convection is rapidly depleted in dry environments whenRsubis small. While deep convective initiation occurs with an increase in relative humidity of the near environment from moistening by earlier convection, the importance of this moisture preconditioning is inconclusive as it is accompanied by an increase inRsub. Overall, it is concluded that small changes toRsubdriven by external forcing or by convection itself could be a dominant regulator of deep convective initiation.

     
    more » « less