skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Deep Convective Organization, Moisture Vertical Structure, and Convective Transition Using Deep-Inflow Mixing

It is an open question whether an integrated measure of buoyancy can yield a strong relation to precipitation across tropical land and ocean, across the seasonal and diurnal cycles, and for varying degrees of convective organization. Building on previous work, entraining plume buoyancy calculations reveal that differences in convective onset as a function of column water vapor (CWV) over land and ocean, as well as seasonally and diurnally over land, are largely due to variability in the contribution of lower-tropospheric humidity to the total column moisture. Over land, the relationship between deep convection and lower-free-tropospheric moisture is robust across all seasons and times of day, whereas the relation to boundary layer moisture is robust for the daytime only. Using S-band radar, these transition statistics are examined separately for mesoscale and smaller-scale convection. The probability of observing mesoscale convective systems sharply increases as a function of lower-free-tropospheric humidity. The consistency of this with buoyancy-based parameterization is examined for several mixing formulations. Mixing corresponding to deep inflow of environmental air into a plume that grows with height, which incorporates nearly equal weighting of boundary layer and free-tropospheric air, yields buoyancies consistent with the observed onset of deep convection across the seasonal and diurnal cycles in the Amazon. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for smaller-scale convection.

 
more » « less
PAR ID:
10088947
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
4
ISSN:
0022-4928
Page Range / eLocation ID:
p. 965-987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Using multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale convective system (MCS) precipitation intensity P max , environmental moisture, large-scale vertical velocity, and system radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and P max emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS P max increases sharply with increasing boundary layer and lower free tropospheric (LFT) moisture, with the highest P max values originating from MCSs in environments exhibiting a peak in LFT moisture near 750 hPa. MCS P max exhibits strikingly similar behavior as a function of water vapor among tropical land and ocean regions. Yet, while the moisture– P max relationship depends strongly on mean tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land. Other P max -dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity. Larger systems typically contain wider convective cores and higher P max , consistent with increased protection from dilution due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally supports greater precipitation production. Last, temporal lead–lag analysis suggests that anomalous moisture in the lower–middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming. 
    more » « less
  2. Abstract

    Observations and cloud‐resolving simulations suggest that a convective updraft structure drawing mass from a deep lower‐tropospheric layer occurs over a wide range of conditions. This occurs for both mesoscale convective systems (MCSs) and less‐organized convection, raising the question: is there a simple, universal characteristic governing the deep inflow? Here, we argue that nonlocal dynamics of the response to buoyancy are key. For precipitating deep‐convective features including horizontal scales comparable to a substantial fraction of the troposphere depth, the response to buoyancy tends to yield deep inflow into the updraft mass flux. Precipitation features in this range of scales are found to dominate contributions to observed convective precipitation for both MCS and less‐organized convection. The importance of such nonlocal dynamics implies thinking beyond parcel models with small‐scale turbulence for representation of convection in climate models. Solutions here lend support to investment in parameterizations at a complexity between conventional and superparameterization.

     
    more » « less
  3. Abstract Observations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free troposphere (LFT; 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL; 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden–Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer time scales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short time scales in both temperature and moisture fluctuations and can be used to complement the commonly used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems. 
    more » « less
  4. Abstract

    This study examines two factors impacting initiation of moist deep convection: free-tropospheric environmental relative humidity (ϕE) and horizontal scale of subcloud ascent (Rsub), the latter exerting a dominant control on cumulus cloud width. A simple theoretical model is used to formulate a “scale selection” hypothesis: that a minimumRsubis required for moist convection to go deep, and that this minimum scale decreases with increasingϕE. Specifically, the ratio ofto saturation deficit (1 −ϕE) must exceed a certain threshold value that depends on cloud-layer environmental lapse rate. Idealized, large-eddy simulations of moist convection forced by horizontally varying surface fluxes show strong sensitivity of maximum cumulus height to bothϕEandRsubconsistent with the hypothesis. IncreasingRsubby only 300–400 m can lead to a large increase (>5 km) in cloud height. A passive tracer analysis shows that the bulk fractional entrainment rate decreases rapidly withRsubbut depends little onϕE. However, buoyancy dilution increases as eitherRsuborϕEdecreases; buoyancy above the level of free convection is rapidly depleted in dry environments whenRsubis small. While deep convective initiation occurs with an increase in relative humidity of the near environment from moistening by earlier convection, the importance of this moisture preconditioning is inconclusive as it is accompanied by an increase inRsub. Overall, it is concluded that small changes toRsubdriven by external forcing or by convection itself could be a dominant regulator of deep convective initiation.

     
    more » « less
  5. Abstract

    This study synthesizes the results of 13 high-resolution simulations of deep convective updrafts forming over idealized terrain using environments observed during the RELAMPAGO and CACTI field projects. Using composite soundings from multiple observed cases, and variations upon them, we explore the sensitivity of updraft properties (e.g., size, buoyancy, and vertical pressure gradient forces) to influences of environmental relative humidity, wind shear, and mesoscale orographic forcing that support or suppress deep convection initiation (CI). Emphasis is placed on differentiating physical processes affecting the development of updrafts (e.g., entrainment-driven dilution of updrafts) in environments typifying observed successful and null (i.e., no CI despite affirmative operational forecasts) CI events. Thermally induced mesoscale orographic lift favors the production of deep updrafts originating from ∼1- to 2-km-wide boundary layer thermals. Simulations without terrain forcing required much larger (∼5-km-wide) thermals to yield precipitating convection. CI outcome was quite sensitive to environmental relative humidity; updrafts with increased buoyancy, depth, and intensity thrived in otherwise inhospitable environments by simply increasing the free-tropospheric relative humidity. This implicates the entrainment of free-tropospheric air into updrafts as a prominent governor of CI, consistent with previous studies. Sensitivity of CI to the environmental wind is manifested by 1) low-level flow affecting the strength and depth of mesoscale convergence along the terrain, and 2) clouds encountering updraft-suppressing pressure gradient forces while interacting with vertical wind shear in the free troposphere. Among the ensemble of thermals occurring in each simulation, the widest deep updrafts in each simulation were the most sensitive to environmental influences.

     
    more » « less