skip to main content

Title: Deeply conserved susceptibility in a multi‐host, multi‐parasite system

Variation in susceptibility is ubiquitous in multi‐host, multi‐parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti‐parasite defence. This demonstrates the importance of deep phylogeny for understanding present‐day ecological interactions.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Ecology Letters
Page Range / eLocation ID:
p. 987-998
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector‐transmitted parasites.

    Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity ofLeucocytozoon(an avian blood parasite) at site and species levels across the New World.

    To explore spatial patterns in infection probability and lineage diversity forLeucocytozoonparasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high‐resolution satellite remote‐sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly.

    Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence ofLeucocytozoonparasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected withLeucocytozoonincreased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes.

    Whereas temperature partially constrainsLeucocytozoondiversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, forLeucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector‐transmitted parasites. Unlike other vector‐transmitted diseases, our results show thatLeucocytozoondiversity and prevalence will likely decrease with warming temperatures.

    more » « less
  2. Abstract

    The immune system is the primary barrier to parasite infection, replication, and transmission following exposure, and variation in immunity can accordingly manifest in heterogeneity in traits that govern population-level infectious disease dynamics. While much work in ecoimmunology has focused on individual-level determinants of host immune defense (e.g., reproductive status and body condition), an ongoing challenge remains to understand the broader evolutionary and ecological contexts of this variation (e.g., phylogenetic relatedness and landscape heterogeneity) and to connect these differences into epidemiological frameworks. Ultimately, such efforts could illuminate general principles about the drivers of host defense and improve predictions and control of infectious disease. Here, we highlight recent work that synthesizes the complex drivers of immunological variation across biological scales of organization and scales these within-host differences to population-level infection outcomes. Such studies note the limitations involved in making species-level comparisons of immune phenotypes, stress the importance of spatial scale for immunology research, showcase several statistical tools for translating within-host data into epidemiological parameters, and provide theoretical frameworks for linking within- and between-host scales of infection processes. Building from these studies, we highlight several promising avenues for continued work, including the application of machine learning tools and phylogenetically controlled meta-analyses to immunology data and quantifying the joint spatial and temporal dependencies in immune defense using range expansions as model systems. We also emphasize the use of organismal traits (e.g., host tolerance, competence, and resistance) as a way to interlink various scales of analysis. Such continued collaboration and disciplinary cross-talk among ecoimmunology, disease ecology, and mathematical modeling will facilitate an improved understanding of the multi-scale drivers and consequences of variation in host defense.

    more » « less
  3. Abstract

    Understanding parasite transmission in communities requires knowledge of each species' capacity to support transmission. This property, ‘competence’, is a critical currency for modelling transmission under community change and for testing diversity–disease theory. Despite the central role of competence in disease ecology, we lack a clear understanding of the factors that generate competence and drive its variation.

    We developed novel conceptual and quantitative approaches to systematically quantify competence for a multi‐host, multi‐parasite community. We applied our framework to an extensive dataset: five amphibian host species exposed to four parasitic trematode species across five ecologically realistic exposure doses. Together, this experimental design captured 20 host–parasite interactions while integrating important information on variation in parasite exposure. Using experimental infection assays, we measured multiple components of the infection process and combined them to produce competence estimates for each interaction.

    With directly estimated competence values, we asked which components of the infection process best explained variation in competence: barrier resistance (the initial fraction of administered parasites blocked from infecting a host), internal clearance (the fraction of established parasites lost over time) or pre‐transmission mortality (the probability of host death prior to transmission). We found that variation in competence among the 20 interactions was best explained by differences in barrier resistance and pre‐transmission mortality, underscoring the importance of host resistance and parasite pathogenicity in shaping competence.

    We also produced dose‐integrated estimates of competence that incorporated natural variation in exposure to address questions on the basis and extent of variation in competence. We found strong signals that host species identity shaped competence variation (as opposed to parasite species identity). While variation in infection outcomes across hosts, parasites, individuals and doses was considerable, individual heterogeneity was limited compared to among‐species differences. This finding highlights the robustness of our competence estimates and suggests that species‐level values may be strong predictors for community‐level transmission in natural systems.

    Competence emerges from distinct underlying processes and can have strong species‐level characteristics; thus, this property has great potential for linking mechanisms of infection to epidemiological patterns.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  4. Abstract Aim

    Macroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers.



    Time period


    Major taxa studied

    Avian haemosporidian parasites (generaPlasmodium,Haemoproteus,LeucocytozoonandParahaemoproteus).


    We amalgamated infection data from 53,669 individual birds representing 2,445 species world‐wide. Spatio‐phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships.


    Idiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance forPlasmodiumandParahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low‐prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional‐scale variation in habitat and microclimate might influence transmission, in addition to global drivers.

    Main conclusions

    Our hierarchical global analysis supports regional‐scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios.

    more » « less
  5. Abstract

    Hosts and parasites are embedded in communities where species richness and composition can influence disease outcomes (diversity–disease relationships). The direction and magnitude of diversity–disease relationships are influenced by variation in competence (ability to support and transmit infections) of hosts in a community. However, host susceptibility to parasites, which mediates host competence, is not static and is influenced by environmental factors, including pollutants. Despite the role that pollutants can play in augmenting host susceptibility, how pollutants influence diversity–disease dynamics is not well understood.

    Using an amphibian–trematode model, we tested how NaCl influences diversity–disease dynamics. We predicted that NaCl exposure can alter relative susceptibility of host species to trematodes, leading to cascading effects on the diversity–disease relationship. To test these predictions, we exposed hosts to benign or NaCl environments and generated communities that differed in number and composition of host species. We exposed these communities to trematodes and measured disease outcomes at the community (total infections across all hosts within a community) and species levels (average number of infections per host species within a community).

    Host species differed in their relative susceptibility to trematodes when exposed to NaCl. Consequently, at the community level (total infections across all hosts within a community), we only detected diversity–disease relationships (dilution effects) in communities where hosts were exposed to NaCl. At the species level, disease outcomes (average number of infections/species) and whether multi‐species communities supported lower number of infections relative to single‐species communities depended on community composition. Notably, however, as with overall community infection, diversity–disease relationships only emerged when hosts were exposed to NaCl.

    Synthesis.Pollutants are ubiquitous in nature and can influence disease dynamics across a number of host–parasite systems. Here, we show that NaCl exposure can alter the relative susceptibility of host species to parasites, influencing the relationship between biodiversity and disease at both community and species levels. Collectively, our study contributes to the limited knowledge surrounding environmental mediators of host susceptibility and their influence on diversity–disease dynamics.

    more » « less