skip to main content


Title: Using Mid-Semester Evaluations for Increasing Success of STEM Students: A Case-Study
Increasing persistence and graduation of post-secondary STEM students is a topic of significant focus and research, as are strategies for identifying barriers to suc-cess and intervening to bridge related gaps. In the case of underrepresented students, there are many challenges that may impact persistence in STEM majors, many of which, while manifesting as academic failure, are not di-rectly related to academics. Thus, it is important not only to develop mechanisms for recognizing when students are in danger of failing courses, but to also establish a support structure for intervention that ascertains and addresses a variety of possible causes. This article describes a strategy for increasing student success and indicates some of the successes, some of the failures, and some of the challenges involved in conducting a mid-semester evaluation as part of a National Science Foundation Scholarships in STEM (S-STEM) project. Students for our S-STEM project were selected from juniors and seniors with significant unmet financial need primarily on the basis of academic ability with specific effort placed on supporting students from demographic groups underrepresented in STEM majors  more » « less
Award ID(s):
1154368
NSF-PAR ID:
10089037
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of STEM education
Volume:
19
Issue:
3
ISSN:
1557-5284
Page Range / eLocation ID:
21-26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less
  2. null (Ed.)
    The overall goal of the NSF Division of Undergraduate Education (DUE) S-STEM funded "Attracting and Cultivating Cybersecurity Experts and Scholars through Scholarships" (ACCESS) program is to increase Cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need and to generate knowledge about academic success, retention, persistence, graduation, and career pathways of these students to improve the education of future STEM workers. Specifically, ACCESS aims to contribute towards addressing the tremendous governmental and industry need for highly skilled cybersecurity experts. Program objectives include: (1) increasing annual enrollment of students in the B.S. in Computer and Information Sciences programs with specialization in Cybersecurity; (2) enhancing curricular and extra-curricular student support services and activities for students; (3) strengthening the partnerships with computer and information technology employers; and (4) investigating the impact of the curricular and co-curricular activities on student success. While significant research has been done relative to student success, retention, and persistence to graduation in STEM fields, cybersecurity is a new field of study and factors affecting student recruitment, academic success, retention, persistence to graduation within this field are not known. In year 1, students were recruited, applications were evaluated, and scholarships were awarded to nine academically talented students, beginning fall 2020. Of these students, four are female (one is from an underrepresented minority population) and five are male (three are from underrepresented minority populations). The students engage in a set of co-curriculum activities, including participation in: outreach activities; technical and career development seminars; a cybersecurity-focused student organization; and potentially, cybersecurity undergraduate research and summer internship opportunities. The paper and poster describe the background of the ACCESS program, recruitment and selection of ACCESS scholarship recipients, project activities, and challenges presented by the COVID-19 pandemic. 
    more » « less
  3. Consistent with national trends, only about ½ of students who intend to major in STEM disciplines at Maryville College (MC) complete bachelor’s degrees in these fields. The Scots Science Scholars (S3) program was funded through the National Science Foundation’s STEM Talent Extension Program to increase the number of students graduating with STEM degrees from MC. The S3 program enrolls college freshmen who have an interest in STEM majors and math ACT scores between 21 and 27, with emphasis on students from groups underrepresented in STEM and first-generation college students. The program consists of a summer bridge, a living-learning community, early engagement in STEM research, a seminar series that exposes students to STEM careers and research fields, academic support through a first-year seminar class, peer tutoring, and time-management counseling. The program has enrolled 6 cohorts of students (n = 97) since 2013, (54% female, 22% underrepresented minorities and 35% first-generation college students). From 2013-2017, S3 compared favorably to the general college population: 96% of all S3 completed the first year of college, 69% declared STEM majors, and 85% returned to the college for a second year (compared to 71%, p < 0.001). Overall, S 3 students persist at the college longer than non-S3 students (P<0.01). Compared to a matched control group, S 3 had significantly higher STEM major declaration rates (68% vs. 38%), higher rates of STEM retention through the junior year (41% vs. 20%), and improved overall college persistence (P< 0.01). Students report high levels of satisfaction with the summer program. At the end of the summer program, students report gains in skills and attitudes that are important for success in STEM. They also perform significantly better on math and chemistry assessments after completing the program. College-wide, the number of students enrolled in STEM majors at Maryville has increased by 52% since the inception of S3 , and STEM undergraduate research productivity has increased markedly. Our data suggest the S3 program is an important component of institutional changes that are increasing the STEM population and building a robust and productive STEM culture at a liberal arts college. 
    more » « less
  4. Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program. 
    more » « less
  5. Abstract Background

    Louisiana State University's (LSU) STEM Talent Expansion Program (STEP) was established to increase students' persistence in first‐year, declared engineering majors (a project priority), in science, technology, engineering, and math (STEM) majors (an NSF goal), and in all majors at LSU (an institutional goal). Over 8 years, 3,097 (27%) engineering students participated in one or more STEP activities including a residential college, a student mentoring program, an introductory engineering design course, and a summer bridge camp for first‐year students.

    Purpose

    This paper describes the influence of the STEP activities on persistence, while accounting for demographic and academic preparation variables.

    Design/Method

    Data collected over 8 years from first‐year engineering students include demographics, academic preparation, participation in STEP activities, and yearly status regarding major and graduation. Descriptive statistics, correlation analysis, and multiple logistic regression determine which factors significantly impact persistence in engineering majors, in STEM majors, and in all majors at LSU.

    Results

    STEP participants have higher persistence levels than nonparticipants by at least 11% in engineering, 9% in STEM, and 5% in all majors at LSU. Gender, ACT math scores, and, in some cases, ethnicity significantly impact persistence. Participation in the residential college, introductory course, and mentoring programs significantly increased persistence in engineering majors, in STEM majors, and at the university, while the summer bridge camp did not show as much influence on persistence overall.

    Conclusion

    STEP was successful at increasing persistence in engineering and STEM majors. Specific STEP activities continue to evolve in the College of Engineering and should continue to reap positive results in the persistence of engineering students.

     
    more » « less