skip to main content


Title: Engineering for sustainable communities: Epistemic tools in support of equitable and consequential middle school engineering
Abstract

This study is focused on engineering for sustainable communities (EfSC) in three middle school classrooms. Three in‐depth case studies are presented that explore how two related EfSC epistemic toolsets—(a) community engineering and ethnography tools for defining problems, and (b) integrating perspectives in design specification and optimization through iterative design sketch‐up and prototyping—work to support the following: (a) Students' recruitment of multiple epistemologies; (b) Navigation of multiple epistemologies; and (c) students' onto‐epistemological developments in engineering. Using a theoretical framework grounded in justice‐oriented notions of equity intersecting with multiple epistemologies, we investigated the impact of the related epistemic toolsets on students' engineering engagement. Specifically, the study focused on how the tools worked when they were taken up in particular ways by teacher and students, and how the nature of their iterative engagement with the tools led to outcomes in ways that were equitable and consequential, both to students' engineering experiences and their engineering onto‐epistemological developments, and also in responding to the community injustices prototypes were designed to address. Tensions that emerged are discussed with further reflection on what the EfSC epistemic toolsets suggest about the affordances of a productive epistemic space and the concomitant risks related to larger institutional norms, which constrain the extent of students' justice‐oriented engineering goals.

 
more » « less
NSF-PAR ID:
10089072
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Science Education
Volume:
103
Issue:
4
ISSN:
0036-8326
Page Range / eLocation ID:
p. 1011-1046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objectives We examine the community epistemologies in youth’s iterative refinements of STEM-rich inventions across settings and time. Iteration in STEM-rich engineering/invention work refers to re-thinking ideas/designs within prototyping processes (Cunningham & Kelly, 2017). The objective of this paper is to examine the political dimensions of iteration through a) how iteration involves pre- and post-design “lives” of inventions especially towards new social futures, and b) the intentional incorporation of cultural epistemologies towards advancing new forms of legitimate inventor knowledge/practice (Yosso, 2005). Framing We draw from critical justice and consequential learning studies. Critical justice focuses on recognizing diversity and addressing structural inequalities perpetuated through systemic racism and classism. It seeks re-shifted relations of power and position within multiple scales-of-activity in learning, intersected with historicized injustices in learning environments. Consequential learning examines what matters to people, and how associated values and practices, when coordinated through social activity, allows for imagining new social futures (Gutierrez, 2012). Viewing the iterative process of inventing through a justice-oriented consequential lens calls into question traditional modes of knowing, and challenges/expands who and what areas of expertise are recognized and valued. Methods Our study takes place in two community makerspaces in mid-sized cities. Both center community engagement and support youth in designing/inventing to address problems they and their communities care about. Both also support minoritized youth in inventing through engagement with a wide range of community/STEM stakeholders. In researcher-educator roles, we collaborated with both makerspaces to establish programs supporting youth in sustained engagement in STEM and making/inventing in culturally-sustaining ways. In our two-year, longitudinal critical ethnography, data were generated in weekly community making sessions between 2016-2018. Data include artifacts, youth conversation groups, and videos capturing youth interaction with STEM and community experts at various stages in their design process. Analysis involved multiple stages and levels of coding based on open-coding and constant comparison procedures. Findings We ground our paper in four in-depth longitudinal cases of youth’s iterative design work: Nila’s light-up #stopracism sign; Su’zanne’s massaging slipper, Sharon’s geodesic play dome, and Jazmyn’s portable fan. Across cases, we illustrate three findings. First, youth located broader injustices within local making/inventing discourses with support from community and STEM allies, suggesting youth drew from multiple epistemologies, some grounded in community cultural wealth, others in STEM. For example, Su’Zanne drew from a familial culture of care and resistance in recognizing injustices nested in homelessness while iterating a way to make her slipper “more massaging.” The geodesic dome youth-makers drew from collective solidarity/resistance in making a structure for younger peers due to unjust lack of play infrastructure. Second, iterative engagement involving community wealth afforded further design and inventing experiences and expanded ownership over inventions across many stakeholders. For example, youth turned Nila’s #stopracism sign on during group discussions when they felt that racism needed to be foregrounded. Third, the afterlife of youth invention processes impacted the emergent inventor-maker culture through influencing the iterative process. Significance Iterations expand hybridization of cultural knowledge/practice and STEM-rich inventing, re-shaping whose cultural knowledge matters, and fostering justice-oriented collective outcomes. 
    more » « less
  2. null (Ed.)
    In June 2020, at the annual conference of the American Society for Engineering Education (ASEE), which was held entirely online due to the impacts of COVID-19 (SARS-CoV-2), engineering education researchers and social justice scholars diagnosed the spread of two diseases in the United States: COVID-19 and racism. During a virtual workshop (T614A) titled, “Using Power, Privilege, and Intersectionality as Lenses to Understand our Experiences and Begin to Disrupt and Dismantle Oppressive Structures Within Academia,” Drs. Nadia Kellam, Vanessa Svihla, Donna Riley, Alice Pawley, Kelly Cross, Susannah Davis, and Jay Pembridge presented what we might call a pathological analysis of institutionalized racism and various other “isms.” In order to address the intersecting impacts of this double pandemic, they prescribed counter practices and protocols of anti-racism, and strategies against other oppressive “isms” in academia. At the beginning of the virtual workshop, the presenters were pleasantly surprised to see that they had around a hundred attendees. Did the online format of the ASEE conference afford broader exposure of the workshop? Did recent uprising of Black Lives Matter (BLM) protests across the country, and internationally, generate broader interest in their topic? Whatever the case, at a time when an in-person conference could not be convened without compromising public health safety, ASEE’s virtual conference platform, furnished by Pathable and supplemented by Zoom, made possible the broader social impacts of Dr. Svihla’s land acknowledgement of the unceded Indigenous lands from which she was presenting. Svihla attempted to go beyond a hollow gesture by including a hyperlink in her slides to a COVID-19 relief fund for the Navajo Nation, and encouraged attendees to make a donation as they copied and pasted the link in the Zoom Chat. Dr. Cross’s statement that you are either a racist or an anti-racist at this point also promised broader social impacts in the context of the virtual workshop. You could feel the intensity of the BLM social movements and the broader political climate in the tone of the presenters’ voices. The mobilizing masses on the streets resonated with a cutting-edge of social justice research and education at the ASEE virtual conference. COVID-19 has both exacerbated and made more obvious the unevenness and inequities in our educational practices, processes, and infrastructures. This paper is an extension of a broader collaborative research project that accounts for how an exceptional group of engineering educators have taken this opportunity to socially broaden their curricula to include not just public health matters, but also contemporary political and social movements. Engineering educators for change and advocates for social justice quickly recognized the affordances of diverse forms of digital technologies, and the possibilities of broadening their impact through educational practices and infrastructures of inclusion, openness, and accessibility. They are makers of what Gary Downy calls “scalable scholarship”—projects in support of marginalized epistemologies that can be scaled up from ideation to practice in ways that unsettle and displace the dominant epistemological paradigm of engineering education.[1] This paper is a work in progress. It marks the beginning of a much lengthier project that documents the key positionality of engineering educators for change, and how they are socially situated in places where they can connect social movements with industrial transitions, and participate in the production of “undone sciences” that address “a structured absence that emerges from relations of inequality.”[2] In this paper, we offer a brief glimpse into ethnographic data we collected virtually through interviews, participant observation, and digital archiving from March 2019 to August 2019, during the initial impacts of COVID-19 in the United States. The collaborative research that undergirds this paper is ongoing, and what is presented here is a rough and early articulation of ideas and research findings that have begun to emerge through our engagement with engineering educators for change. This paper begins by introducing an image concept that will guide our analysis of how, in this historical moment, forms of social and racial justice are finding their way into the practices of engineering educators through slight changes in pedagogical techniques in response the debilitating impacts of the pandemic. Conceptually, we are interested in how small and subtle changes in learning conditions can socially broaden the impact of engineering educators for change. After introducing the image concept that guides this work, we will briefly discuss methodology and offer background information about the project. Next, we discuss literature that revolves around the question, what is engineering education for? Finally, we introduce the notion of situating engineering education and give readers a brief glimpse into our ethnographic data. The conclusion will indicate future directions for writing, research, and intervention. 
    more » « less
  3. This fundamental research in pre-college education engineering study investigates the ways in which elementary teachers learn about engineering by engaging in the epistemic practices of engineers. Teaching engineering explicitly in elementary settings is a paradigm shift, as most K-6 teachers are not taught about engineering in their preparation programs and did not do classroom engineering as students. However, current STEM education reforms require these teachers to teach engineering in science settings and it will require concerted efforts between professional development providers and educational researchers to better help these teachers learn about and teach engineering to their students. Our study context consisted of 18 2nd and 4th grade teachers participating in one of two two-day workshops. The first day focused on what engineering is, what the epistemic practices of engineering are, and how to manage classroom engineering projects. The second day focused on how to teach a specific engineering unit for their grade level. Taking a sociomaterial view of learning, we asked the following research questions: 1. How do the engineering notebooks scaffold the teachers activities and discourse? 2. How and to what extent does the notebook support their engagement in engineering practices? Our analysis triangulated between three data sources during a two-hour time period where teachers designed, tested, and improved enclosures intended to minimize cost and mass loss of an ice cube in a heat chamber (“Perspiring Penguins” (Schnittka, 2010)). We focused on teacher talk/action collected from video/audio recordings trained on four small groups (10 total teachers). We also collected engineering notebooks they used during this activity. After initial analyses, we followed up with select teachers with targeted interview questions to focus on clarification of questions that arose. Our findings suggest that the teachers use the notebooks in ways that are significantly different from the ways engineers do; however, they are a useful pedagogical tool that supported them in attending to and discussing activities that were necessary to engage in engineering practices and design/re-design their technology. Additionally, our paper will describe specific examples where teachers had rich discussions that were not represented in the notebooks but there were references made in the notebooks that were not explicitly discussed. Implications for the importance of well-designed notebooks and the benefits of ethnographic methods for researching teacher learning will be discussed. 
    more » « less
  4. Community-based research (CBR) is a practice that engages researchers in collaborative, change-oriented, and inclusive projects in the community. One common example of CBR is university-community collaboration in which students and researchers come up with ideas, perspectives, and knowledge at each stage of the project with the goal to address community needs. The community is mainly involved in identifying the research questions for the projects and making decisions about how the results of the research-focused projects will be implemented. This paper presents a replication of a model focused on university-community collaboration, student engagement and Science, Technology, Engineering, and Math (STEM) attraction and retention using three research-focused projects addressing community needs. The three projects are (1) empathic design project aimed at improving quality greenspaces and pedestrian streetscape experience, (2) food justice project to study the disparities in food access between local regions, and (3) analyzing water quality in a local creek. The projects provided a unique opportunity for students to directly experience and contribute to the research process. In addition, students worked closely with their academic peers and community partners who served as collaborators and mentors. The study reports on the impact of the program on student learning and tendency to stay back in the community. The program's collaborative nature and its effect on students' satisfaction while working on specific projects are also examined. Furthermore, the program helped develop and sustain university-community partnerships. The community stakeholders participating in focus groups were satisfied with the process of identifying community projects and also expressed their satisfaction with the students’ work. 
    more » « less
  5. Community-based research (CBR) is a practice that engages researchers in collaborative, change-oriented, and inclusive projects in the community. One common example of CBR is university-community collaboration in which students and researchers come up with ideas, perspectives, and knowledge at each stage of the project with the goal to address community needs. The community is mainly involved in identifying the research questions for the projects and making decisions about how the results of the research-focused projects will be implemented. This paper presents a replication of a model focused on university-community collaboration, student engagement and Science, Technology, Engineering, and Math (STEM) attraction and retention using three research-focused projects addressing community needs. The three projects are (1) empathic design project aimed at improving quality greenspaces and pedestrian streetscape experience, (2) food justice project to study the disparities in food access between local regions, and (3) analyzing water quality in a local creek. The projects provided a unique opportunity for students to directly experience and contribute to the research process. In addition, students worked closely with their academic peers and community partners who served as collaborators and mentors. The study reports on the impact of the program on student learning and tendency to stay back in the community. The program's collaborative nature and its effect on students' satisfaction while working on specific projects are also examined. Furthermore, the program helped develop and sustain university-community partnerships. The community stakeholders participating in focus groups were satisfied with the process of identifying community projects and also expressed their satisfaction with the students’ work. 
    more » « less