skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL 1, MSL 2, and MSL 3 reveal a role for inter‐organellar communication in plant development
Abstract

Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between threeMechanosensitive channel ofSmall conductance‐Like (MSL) proteins fromArabidopsis thaliana.MSLproteins areArabidopsishomologs of the bacterialMechanosensitivechannel ofSmall conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock.MSL1 localizes to the inner mitochondrial membrane, whileMSL2 andMSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion inMSL1, both in wild type and inmsl2 msl3mutant backgrounds.msl1single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling inmsl2 msl3double mutants was exacerbated in themsl1 msl2 msl3triple mutant. However, the introduction of themsl1lesion into themsl2 msl3mutant background suppressed othermsl2 msl3mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version ofMSL1. In yeast‐based interaction studies,MSL1 interacted with itself, but not withMSL2 orMSL3. These results establish that the abnormalities observed inmsl2 msl3double mutants is partially dependent on the presence of functionalMSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.

 
more » « less
NSF-PAR ID:
10089343
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Volume:
3
Issue:
3
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Light is critical in the ability of plants to accumulate chlorophyll. When exposed to far‐red (FR) light and then grown in white light in the absence of sucrose, wild‐type seedlings fail to green in a response known as theFRblock of greening (BOG). This response is controlled by phytochrome A through repression of protochlorophyllide reductase‐encoding (POR) genes byFRlight coupled with irreversible plastid damage. Sigma (SIG) factors are nuclear‐encoded proteins that contribute to plant greening and plastid development through regulating gene transcription in chloroplasts and impacting retrograde signaling from the plastid to nucleus.SIGs are regulated by phytochromes, and the expression of someSIGfactors is reduced in phytochrome mutant lines, including phyA. Given the association of phyA with theFR BOGand its regulation ofSIGfactors, we investigated the potential regulatory role ofSIGfactors in theFR BOGresponse.

    Methods

    We examinedFR BOGresponses insigmutants, phytochrome‐deficient lines, and mutant lines for several phy‐associated factors. We quantified chlorophyll levels and examined expression of keyBOG‐associated genes.

    Results

    Among sixsigmutants, only thesig6 mutant significantly accumulated chlorophyll afterFR BOGtreatment, similar to thephyAmutant.SIG6 appears to control protochlorophyllide accumulation by contributing to the regulation of tetrapyrrole biosynthesis associated with glutamyl‐tRNAreductase (HEMA1) function, select phytochrome‐interacting factor genes (PIF4andPIF6), andPENTA1, which regulatesPORAmRNAtranslation afterFRexposure.

    Conclusions

    Regulation ofSIG6plays a significant role in plant responses toFRexposure during theBOGresponse.

     
    more » « less
  2. Abstract

    Brassinosteroids (BRs) are essential plant growth‐promoting hormones involved in many processes throughout plant development, from seed germination to flowering time. SinceBRsdo not undergo long‐distance transport, cell‐ and tissue‐specific regulation of hormone levels involves both biosynthesis and inactivation. To date, tenBR‐inactivating enzymes, with at least five distinct biochemical activities, have been experimentally identified in the model plantArabidopsis thaliana. Epigenetic interactions betweenT‐DNAinsertion alleles and genetic linkage have hindered analysis of higher‐order null mutants in these genes. A previous study demonstrated that thebas1‐2 sob7‐1 ben1‐1triple‐null mutant could not be characterized due to epigenetic interactions between the exonicT‐DNAinsertions inbas1‐2andsob7‐1,causing the intronicT‐DNAinsertion ofben1‐1to revert to a partial loss‐of‐function allele. We usedCRISPR‐Cas9genome editing to avoid this problem and generated thebas1‐2 sob7‐1 ben1‐3triple‐null mutant. This triple‐null mutant resulted in an additive seedling long‐hypocotyl phenotype. We also uncovered a role forBEN1‐mediatedBR‐inactivation in seedling cotyledon petiole elongation that was not observed in the singleben1‐2null mutant but only in the absence of bothBAS1andSOB7. In addition, genetic analysis demonstrated thatBEN1does not contribute to the early‐flowering phenotype, whichBAS1andSOB7redundantly regulate. Our results show thatBAS1,BEN1,andSOB7have overlapping and independent roles based on their differential spatiotemporal tissue expression patterns

     
    more » « less
  3. Summary

    Volvox carteriand other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis inV. carteriusingCRISPR/Cas9 components expressed from transgenes. We usedV. carterinitrate reductase gene (nitA) regulatory sequences to conditionally expressStreptococcus pyogenesCas9, andV. carteriU6RNAgene regulatory sequences to constitutively express single‐guideRNA(sgRNA) transcripts.Volvox carteriwas bombarded with both Cas9 vector and one of several sgRNAvectors programmed to target different test genes (glsA,regAandinvA), and transformants were selected for expression of a hygromycin‐resistance marker present on the sgRNAvector. Hygromycin‐resistant transformants grown with nitrate as sole nitrogen source (inducing fornitA) were tested for Cas9 and sgRNAexpression, and for the ability to generate progeny with expected mutant phenotypes. Some transformants of a somatic regenerator (Reg) mutant strain receiving sgRNAplasmid withglsAprotospacer sequence yielded progeny (at a rate of ~0.01%) with a gonidialess (Gls) phenotype similar to that observed for previously describedglsAmutants, and sequencing of theglsAgene in independent mutants revealed short deletions within the targeted region ofglsA, indicative of Cas9‐directed non‐homologous end joining. Similarly, bombardment of a morphologically wild‐type strain with the Cas9 plasmid and sgRNAplasmids targetingregAorinvAyieldedregAandinvAmutant transformants/progeny, respectively (at rates of 0.1–100%). The capacity to make precisely directed frameshift mutations should greatly accelerate the molecular genetic analysis of development inV. carteri, and of developmental novelty in the volvocine algae.

     
    more » « less
  4. Summary

    Plant lateral organ development is a complex process involving both transcriptional activation and repression mechanisms. TheWOXtranscriptional repressorWOX1/STF, theLEUNIG(LUG) transcriptional corepressor and theANGUSTIFOLIA3 (AN3) transcriptional coactivator play important roles in leaf blade outgrowth and flower development, but how these factors coordinate their activities remains unclear. Here we report physical and genetic interactions among these key regulators of leaf and flower development.

    We developed a novelin plantatranscriptional activation/repression assay and suggest thatLUGcould function as a transcriptional coactivator during leaf blade development.

    MtLUGphysically interacts with MtAN3, and this interaction appears to be required for leaf and flower development. A single amino acid substitution at position 61 in theSNHdomain of MtAN3 protein abolishes its interaction with MtLUG, and its transactivation activity and biological function. Mutations inlugandan3enhanced each other's mutant phenotypes. Both thelugand thean3mutations enhanced thewox1 prsleaf and flower phenotypes inArabidopsis.

    Our findings together suggest that transcriptional repression and activation mediated by theWOX,LUGandAN3 regulators function in concert to promote leaf and flower development, providing novel mechanistic insights into the complex regulation of plant lateral organ development.

     
    more » « less
  5. Summary

    Malonyl‐CoA is a key intermediate in a number of metabolic processes associated with its role as a substrate in acylation and condensation reactions. These types of reactions occur in plastids, the cytosol and mitochondria, and although carboxylation of acetyl‐CoA is the known mechanism for generating the distinct plastidial and cytosolic pools, the metabolic origin of the mitochondrial malonyl‐CoA pool is still unclear. In this study we demonstrate that malonyl‐CoA synthetase encoded by the ArabidopsisAAE13(AT3G16170) gene is localized in both the cytosol and the mitochondria. These isoforms are translated from two types of transcripts, one that contains and one that does not contain a mitochondrial‐targeting pre‐sequence. Whereas the cytosolicAAE13 protein is not essential, due to the presence of a redundant malonyl‐CoA generating system provided by a cytosolic acetyl‐CoA carboxylase, the mitochondrialAAE13 protein is essential for plant growth. Phenotypes of theaae13‐1mutant are transgenically reversed only if the mitochondrial pre‐sequence is present in the ectopically expressedAAE13 proteins. Theaae13‐1mutant exhibits typical metabolic phenotypes associated with a deficiency in the mitochondrial fatty acid synthase system, namely depleted lipoylation of the H subunit of the photorespiratory enzyme glycine decarboxylase, increased accumulation of glycine and glycolate and reduced levels of sucrose. Most of these metabolic alterations, and associated morphological changes, are reversed when theaae13‐1mutant is grown in a non‐photorespiratory condition (i.e. a 1%CO2atmosphere), demonstrating that they are a consequence of the deficiency in photorespiration due to the inability to generate lipoic acid from mitochondrially synthesized fatty acids.

     
    more » « less