skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of resonance and anti-resonance frequencies in a wireless power transfer system: analytical model and experiments
This letter presents a magnetic coupling wireless power transfer system (WPTS) configured in a series-series topology and operating at both resonance and anti-resonance frequencies which occur due to the parasitic coil capacitances. It is shown that their effects on system dynamics cannot be ignored. A mathematical model based on circuit theory is developed and the analytical solution for the power transferred to an electrical load is derived. A technique for extracting coil parameters such as resistance, inductance and capacitance from impedance measurements is proposed. The complete model is first experimentally verified and then used for further numerical investigations.  more » « less
Award ID(s):
1651438
PAR ID:
10089448
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Circuits and Systems II: Express Briefs
ISSN:
1549-7747
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the design, modeling, analysis, and experimental validation of an inductive resonant wireless power transfer (WPT) system to power a micro aerial vehicle (MAV). Using WPT, in general, enables longer flight times, virtually eliminates the need for batteries, and minimizes down time for recharging or replacing batteries. The proposed WPT system consists of a transmit coil, which can either be fixed to ground or placed on a mobile platform, and a receive coil carried by the MAV. The details of the WPT circuit design are presented. A power-transfer model is developed for the two-coil system, where the model is used to select suitable coil geometries to maximize the power received by the MAV for hovering. Analysis, simulation, and experimental results are presented to demonstrate the effectiveness of the WPT circuitry. Finally, a wirelessly powered MAV that hovers above the transmit coil is demonstrated in a laboratory setting. 
    more » « less
  2. Tamm, Eric P (Ed.)
    Abstract We describe early ex vivo proof-of-concept testing of a novel system composed of a disposable endorectal coil and converging multichannel needle guide with a reusable clamp stand, embedded electronics, and baseplate to allow for endorectal magnetic resonance (MR) imaging and in-bore MRI-targeted biopsy of the prostate as a single integrated procedure. Using prostate phantoms imaged with standard T2-weighted sequences in a Siemens 3T Prisma MR scanner, we measured the signal-to-noise ratio in successive 1-cm distances from the novel coil and from a commercially available inflatable balloon coil and measured the lateral and longitudinal deviation of the tip of a deployed MR compatible needle from the intended target point. Signal-to-noise ratio obtained with the novel system was significantly better than the inflatable balloon coil at each of five 1-cm intervals, with a mean improvement of 78% (P< 0.05). In a representative sampling of 15 guidance channels, the mean lateral deviation for MR imaging–guided needle positioning was 1.7 mm and the mean longitudinal deviation was 2.0 mm. Our ex vivo results suggest that our novel system provides significantly improved signal-to-noise ratio when compared with an inflatable balloon coil and is capable of accurate MRI-guided needle deployment. 
    more » « less
  3. In this paper, we investigate the maximum transmission range and power efficiency of Magnetic Induction (MI) subsea wireless communication systems. We propose a new MI channel model based on maximum resonance voltage analysis. We prove that our channel model can maximize the system signal to noise ratio (SNR). Hence, the maximum transmission range of a MI wireless communication system can be determined accordingly. Furthermore, we quantify the eddy current loss of the MI coil antenna in seawater environments. The power consumption of a subsea MI wireless communication system is obtained by summing up the eddy current loss and ohmic loss. Finally, the relationship between the maximum transmission range and power consumption of a subsea MI wireless communication system is determined. 
    more » « less
  4. Flying insects have elastic materials within their exoskeletons that could reduce the energetic cost of flight if their wingbeat frequency is matched to a mechanical resonance frequency. Flapping at resonance may be essential across flying insects because of the power demands of small-scale flapping flight. However, building up large-amplitude resonant wingbeats over many wingstrokes may be detrimental for control if the total mechanical energy in the spring-wing system exceeds the per-cycle work capacity of the flight musculature. While the mechanics of the insect flight apparatus can behave as a resonant system, the question of whether insects flap their wings at their resonant frequency remains unanswered. Using previous measurements of body stiffness in the hawkmoth, Manduca sexta , we develop a mechanical model of spring-wing resonance with aerodynamic damping and characterize the hawkmoth's resonant frequency. We find that the hawkmoth's wingbeat frequency is approximately 80% above resonance and remains so when accounting for uncertainty in model parameters. In this regime, hawkmoths may still benefit from elastic energy exchange while enabling control of aerodynamic forces via frequency modulation. We conclude that, while insects use resonant mechanics, tuning wingbeats to a simple resonance peak is not a necessary feature for all centimetre-scale flapping flyers. 
    more » « less
  5. In this paper, we propose a model for parallel magnetic resonance imaging (pMRI) reconstruction, regularized by a carefully designed tight framelet system, that can lead to reconstructed images with much less artifacts in comparison to those from existing models. Our model is motivated from the observations that each receiver coil in a pMRI system is more sensitive to the specific object nearest to the coil, and all coil images are correlated. To exploit these observations, we first stack all coil images together as a 3-dimensional (3D) data matrix, and then design a 3D directional Haar tight framelet (3DHTF) to represent it. After analyzing sparse information of the coil images provided by the high-pass filters of the 3DHTF, we separate the high-pass filters into effective ones and ineffective ones, and we then devise a 3D directional Haar semi-tight framelet (3DHSTF) from the 3DHTF by replacing its ineffective filters with only one filter. This 3DHSTF is tailor-made for coil images, meanwhile, giving a significant saving in computation comparing to the 3DHTF. With the 3DHSTF, we propose an l1-3DHSTF model for pMRI reconstruction. Numerical experiments for MRI phantom and in-vivo data sets are provided to demonstrate the superiority of our l1-3DHSTF model in terms of the efficiency of reducing aliasing artifacts in the reconstructed images. 
    more » « less