skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying the Most Dominant Event in a News Article by Mining Event Coreference Relations
Award ID(s):
1755943
PAR ID:
10089450
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
Page Range / eLocation ID:
340 to 345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Streaming applications from cluster monitoring to algorithmic trading deploy Kleene queries to detect and aggregate event trends. Rich event matching semantics determine how to compose events into trends. The expressive power of stateof- the-art streaming systems remains limited since they do not support many of these semantics. Worse yet, they suffer from long delays and high memory costs because they maintain aggregates at a fine granularity. To overcome these limitations, our Coarse-Grained Event Trend Aggregation (Cogra) approach supports a rich variety of event matching semantics within one system. Better yet, Cogra incrementally maintains aggregates at the coarsest granularity possible for each of these semantics. In this way, Cogra minimizes the number of aggregates – reducing both time and space complexity. Our experiments demonstrate that Cogra achieves up to six orders of magnitude speed-up and up to seven orders of magnitude memory reduction compared to state-of-the-art approaches. 
    more » « less
  2. null (Ed.)
  3. Video data is often repetitive; for example, the contents of adjacent frames are usually strongly correlated. Such redundancy occurs at multiple levels of complexity, from low-level pixel values to textures and high-level semantics. We propose Event Neural Networks (EvNets), which leverage this redundancy to achieve considerable computation savings during video inference. A defining characteristic of EvNets is that each neuron has state variables that provide it with long-term memory, which allows low-cost, high-accuracy inference even in the presence of significant camera motion. We show that it is possible to transform a wide range of neural networks into EvNets without re-training. We demonstrate our method on state-of-the-art architectures for both high- and low-level visual processing, including pose recognition, object detection, optical flow, and image enhancement. We observe roughly an order-ofmagnitude reduction in computational costs compared to conventional networks, with minimal reductions in model accuracy. 
    more » « less