Multiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield a 2n(1−1/O(k)) time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved in 2n(1−f(k)/k) time for any unbounded function f. This hypothesis has been called the “Super-Strong ETH”, modeled after the ETH and the Strong ETH. We give two results on the Super-Strong ETH: 1. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the “critical threshold”, where the clause-to-variable ratio is 2^kln2−Θ(1). We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. For example, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in 2^n(1−Ω(logk)/k) time, with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlák and Zane [17]. 2. The Unique k-SAT problem is the special case where there is at most one satisfying assignment. Improving prior reductions, we show that the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent. More precisely, we show the time complexities of Unique k-SAT and k-SAT are very tightly correlated: if Unique k-SAT is in 2^n(1−f(k)/k) time for an unbounded f, then k-SAT is in 2^n(1−f(k)(1−ε)/k) time for every ε>0.
more »
« less
A Linear Time Algorithm for Quantum 2-SAT
The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP-complete problem. In contrast, 2-SAT can not only be decided in polynomial time, but in fact in deterministic linear time. In 2006, Bravyi proposed a physically motivated generalization of k-SAT to the quantum setting, defining the problem "quantum k-SAT". He showed that quantum 2-SAT is also solvable in polynomial time on a classical computer, in particular in deterministic time O(n^4), assuming unit-cost arithmetic over a field extension of the rational numbers, where n is number of variables. In this paper, we present an algorithm for quantum 2-SAT which runs in linear time, i.e. deterministic time O(n+m) for n and m the number of variables and clauses, respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC, 2010] used in the study of phase transitions for random quantum 2-SAT, and bears similarities with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking) [SICOMP, 1976] and Aspvall, Plass, and Tarjan (based on strongly connected components) [IPL, 1979].
more »
« less
- Award ID(s):
- 1526189
- PAR ID:
- 10089529
- Date Published:
- Journal Name:
- Conference on Computational Complexity
- Volume:
- 50
- Page Range / eLocation ID:
- 27:1-27:21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield a 2n(1-1/O(k)) time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved in 2n(1-f(k)/k) time for any unbounded function f. This hypothesis has been called the "Super-Strong ETH", modelled after the ETH and the Strong ETH. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the "critical threshold", where the clause-to-variable ratio is such that randomly chosen instances are satisfiable with probability 1/2. We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. For example, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in 2n(1-c*log(k)/k) time with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlak, and Zane (1999). The Unique k-SAT problem is the special case where there is at most one satisfying assignment. Improving prior reductions, we show that the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent. More precisely, we show the time complexities of Unique k-SAT and k-SAT are very tightly correlated: if Unique k-SAT is in 2n(1-f(k)/k) time for an unbounded f, then k-SAT is in 2n(1-f(k)/(2k)) time.more » « less
-
We present new algorithms for computing many faces in arrangements of lines and segments. Given a set $$S$$ of $$n$$ lines (resp., segments) and a set $$P$$ of $$m$$ points in the plane, the problem is to compute the faces of the arrangements of $$S$$ that contain at least one point of $$P$$. For the line case, we give a deterministic algorithm of $$O(m^{2/3}n^{2/3}\log^{2/3} (n/\sqrt{m})+(m+n)\log n)$$ time. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.22}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log^{1/3}n$$ in certain cases (e.g., when $$m=\Theta(n)$$). For the segment case, we present a deterministic algorithm of $$O(n^{2/3}m^{2/3}\log n+\tau(n\alpha^2(n)+n\log m+m)\log n)$$ time, where $$\tau=\min\{\log m,\log (n/\sqrt{m})\}$$ and $$\alpha(n)$$ is the inverse Ackermann function. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.11}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log n$$ in certain cases (e.g., when $$m=\Theta(n)$$). We also give a randomized algorithm of $$O(m^{2/3}K^{1/3}\log n+\tau(n\alpha(n)+n\log m+m)\log n\log K)$$ expected time, where $$K$$ is the number of intersections of all segments of $$S$$. In addition, we consider the query version of the problem, that is, preprocess $$S$$ to compute the face of the arrangement of $$S$$ that contains any given query point. We present new results that improve the previous work for both the line and the segment cases. In particulary, for the line case, we build a data structure of $$O(n\log n)$$ space in $$O(n\log n)$$ randomized time, so that the face containing the query point can be obtained in $$O(\sqrt{n\log n})$$ time with high probability (more specifically, the query returns a binary search tree representing the face so that standard binary-search-based queries on the face can be handled in $$O(\log n)$$ time each and the face itself can be output explicitly in time linear in its size).more » « less
-
null (Ed.)We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.more » « less
-
Santhanam, Rahul (Ed.)Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.more » « less
An official website of the United States government

