skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Initial Characterization of the Two ClpP Paralogs of Chlamydia trachomatis Suggests Unique Functionality for Each
ABSTRACT Members of Chlamydia are obligate intracellular bacteria that differentiate between two distinct functional and morphological forms during their developmental cycle, elementary bodies (EBs) and reticulate bodies (RBs). EBs are nondividing small electron-dense forms that infect host cells. RBs are larger noninfectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other. Chlamydia spp. have five uncharacterized clp genes, clpX , clpC , two clpP paralogs, and clpB . In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined that these genes are expressed midcycle. Bioinformatic analyses of these proteins identified key residues important for activity. Overexpression of inactive clpP mutants in Chlamydia spp. suggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, protease activity of ClpP2, but not ClpP1, was detected in vitro . This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen. IMPORTANCE Chlamydia trachomatis is the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated obligate intracellular pathogens that alternate between two functional and morphologic forms, with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression in Chlamydia spp., their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria.  more » « less
Award ID(s):
1810599
PAR ID:
10089572
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
201
Issue:
2
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Msadek, Tarek (Ed.)
    ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms, the elementary body (EB) and reticulate body (RB), each of which expresses its own specialized repertoire of proteins. Both primary (EB to RB) and secondary (RB to EB) differentiations require protein turnover, and we hypothesize that proteases are critical for mediating differentiation. The Clp protease system is well conserved in bacteria and important for protein turnover. Minimally, the system relies on a serine protease subunit, ClpP, and an AAA+ ATPase, such as ClpX, that recognizes and unfolds substrates for ClpP degradation. In Chlamydia , ClpX is encoded within an operon 3′ to clpP2 . We present evidence that the chlamydial ClpX and ClpP2 orthologs are essential to organism viability and development. We demonstrate here that chlamydial ClpX is a functional ATPase and forms the expected homohexamer in vitro . Overexpression of a ClpX mutant lacking ATPase activity had a limited impact on DNA replication or secondary differentiation but, nonetheless, reduced EB viability with observable defects in EB morphology noted. Conversely, overexpression of a catalytically inactive ClpP2 mutant significantly impacted developmental cycle progression by reducing the overall number of organisms. Blocking clpP2X transcription using CRISPR interference led to a decrease in bacterial growth, and this effect was complemented in trans by a plasmid copy of clpP2 . Taken together, our data indicate that ClpX and the associated ClpP2 serve distinct functions in chlamydial developmental cycle progression and differentiation. IMPORTANCE Chlamydia trachomatis is the leading cause of infectious blindness globally and the most reported bacterial sexually transmitted infection both domestically and internationally. Given the economic burden, the lack of an approved vaccine, and the use of broad-spectrum antibiotics for treatment of infections, an understanding of chlamydial growth and development is critical for the advancement of novel targeted antibiotics. The Clp proteins comprise an important and conserved protease system in bacteria. Our work highlights the importance of the chlamydial Clp proteins to this clinically important bacterium. Additionally, our study implicates the Clp system playing an integral role in chlamydial developmental cycle progression, which may help establish models of how Chlamydia spp. and other bacteria progress through their respective developmental cycles. Our work also contributes to a growing body of Clp-specific research that underscores the importance and versatility of this system throughout bacterial evolution and further validates Clp proteins as drug targets. 
    more » « less
  2. Margolin, William (Ed.)
    ABSTRACT Chlamydia is an obligate intracellular bacterial pathogen that has significantly reduced its genome size in adapting to its intracellular niche. Among the genes that Chlamydia has eliminated is ftsZ , encoding the central organizer of cell division that directs cell wall synthesis in the division septum. These Gram-negative pathogens have cell envelopes that lack peptidoglycan (PG), yet they use PG for cell division purposes. Recent research into chlamydial PG synthesis, components of the chlamydial divisome, and the mechanism of chlamydial division have significantly advanced our understanding of these processes in a unique and important pathogen. For example, it has been definitively confirmed that chlamydiae synthesize a canonical PG structure during cell division. Various studies have suggested and provided evidence that Chlamydia uses MreB to substitute for FtsZ in organizing and coordinating the divisome during division, components of which have been identified and characterized. Finally, as opposed to using an FtsZ-dependent binary fission process, Chlamydia employs an MreB-dependent polarized budding process to divide. A brief historical context for these key advances is presented along with a discussion of the current state of knowledge of chlamydial cell division. 
    more » « less
  3. Summary A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone‐protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix.Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N‐terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)).Strong synergistic interactions were observed between the CLP protease system (clpr1‐2,clpr2‐1,clpc1‐1,clpt1,clpt2)and both PREP homologs (prep1,prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N‐terminal proteomesshowed that many nuclear encoded chloroplast proteins have alternatively processed N‐termini inprep1prep2,clpt1clpt2andprep1prep2clpt1clpt2.Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed. 
    more » « less
  4. Energy-dependent protein degradation by the AAA+ ClpXP protease helps maintain protein homeostasis in bacteria and eukaryotic organelles of bacterial origin. In  Escherichia coli and many other proteobacteria, the SspB adaptor assists ClpXP in degrading ssrA-tagged polypeptides produced as a consequence of tmRNA-mediated ribosome rescue. By tethering these incomplete ssrA-tagged proteins to ClpXP, SspB facilitates their efficient degradation at low substrate concentrations. How this process occurs structurally is unknown. Here, we present a cryo-EM structure of the SspB adaptor bound to a GFP-ssrA substrate and to ClpXP. This structure provides evidence for simultaneous contacts of SspB and ClpX with the ssrA tag within the tethering complex, allowing direct substrate handoff concomitant with the initiation of substrate translocation. Furthermore, our structure reveals that binding of the substrate·adaptor complex induces unexpected conformational changes within the spiral structure of the AAA+ ClpX hexamer and its interaction with the ClpP tetradecamer. 
    more » « less
  5. ABSTRACT Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections, and Chlamydia pneumoniae causes community-acquired respiratory infections. In vivo , the host immune system will release gamma interferon (IFN-γ) to combat infection. IFN-γ activates human cells to produce the tryptophan (Trp)-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). Consequently, there is a reduction in cytosolic Trp in IFN-γ-activated host cells. In evolving to obligate intracellular dependence, Chlamydia has significantly reduced its genome size and content, as it relies on the host cell for various nutrients. Importantly, C. trachomatis and C. pneumoniae are Trp auxotrophs and are starved for this essential nutrient when the human host cell is exposed to IFN-γ. To survive this, chlamydiae enter an alternative developmental state referred to as persistence. Chlamydial persistence is characterized by a halt in the division cycle, aberrant morphology, and, in the case of IFN-γ-induced persistence, Trp codon-dependent changes in transcription. We hypothesize that these changes in transcription are dependent on the particular amino acid starvation state. To investigate the chlamydial response mechanisms acting when other amino acids become limiting, we tested the efficacy of prokaryote-specific tRNA synthetase inhibitors, indolmycin and AN3365, to mimic starvation of Trp and leucine, respectively. We show that these drugs block chlamydial growth and induce changes in morphology and transcription consistent with persistence. Importantly, growth inhibition was reversed when the compounds were removed from the medium. With these data, we find that indolmycin and AN3365 are valid tools that can be used to mimic the persistent state independently of IFN-γ. 
    more » « less