skip to main content


Title: Polymer Brushes on Hexagonal Boron Nitride
Abstract

Direct covalent functionalization of large‐area single‐layer hexagonal boron nitride (hBN) with various polymer brushes under mild conditions is presented. The photopolymerization of vinyl monomers results in the formation of thick and homogeneous (micropatterned, gradient) polymer brushes covalently bound to hBN. The brush layer mechanically and chemically stabilizes the material and allows facile handling as well as long‐term use in water splitting hydrogen evolution reactions.

 
more » « less
NSF-PAR ID:
10089606
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
15
Issue:
19
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The stability of nonpatterned and nanopatterned strong polyelectrolyte brushes (PEBs) is studied as a function of both brush character and the properties of a contacting liquid. High‐molecular‐weight PEBs of poly(4‐methyl vinylpyridinium iodide) (PMeVP) are synthesized using surface‐initiated radical‐chain polymerization. Nanopatterned brushes (NPBs) line with pattern sizes ranging from 50 to 200 nm are generated by patterning the initiator layer using deep‐ultraviolet photolithography followed by brush growth initiated from the patterned layer. Homogeneous PEBs with different degrees of charging and grafting densities are exposed to water and salt solutions with different temperatures for different periods. The degradation is monitored through dry‐state ellipsometry and atomic force microscopy measurements. Enhanced degrafting for more strongly swollen polymer brushes can be observed in agreement with an “entropic spring” model. Based on the results of the nonpatterned brushes, the NPBs are exposed to water at different temperatures and external salt content for varying periods of time. Counterintuitively, the NPBs show increased degrafting for smaller patterns, which is attributed to different polymer chain dynamics for nanobrushes and microbrushes. We investigate the influence of thermodynamic and kinetic parameters on the stability of (nanopatterned) PEBs and discuss the role of entanglements and formation of complexes in such films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1283–1295

     
    more » « less
  2. Abstract

    Polymer single crystals are used as templates to synthesize polymer brushes, known as the “polymer‐single‐crystal‐assisted‐grafting‐to” (PSCAGT) approach. Polymer brushes with controlled grafting densities and spatial tethering locations are demonstrated. Previous works focused on solution crystallization, which involves large amounts of organic solvent, and the grafting density can only be tuned by varying crystallization temperatures. In this work, thin film crystallization is utilized to fabricate 2D polymer crystals on flat surfaces. Subsequent chemical tethering leads to polymer brushes that retain the original morphology of the crystals with high fidelity. Furthermore, it is shown that the grafting density of the polymer brushes fabricated using this method depends on the chain end distribution on the top/bottom surfaces of the crystal, which can be facilely controlled by annealing the crystals at various nonsolvent media. This work broadens the scope of the PSCAGT method and provides a new route to achieve polymer brushes with controlled structures.

     
    more » « less
  3. Abstract

    Intrinsically disordered proteins (IDPs) are a subset of proteins that lack stable secondary structure. Given their polymeric nature, previous mean-field approximations have been used to describe the statistical structure of IDPs. However, the amino-acid sequence heterogeneity and complex intermolecular interaction network have significantly impeded the ability to get proper approximations. One such case is the intrinsically disordered tail domain of neurofilament low (NFLt), which comprises a 50 residue-long uncharged domain followed by a 96 residue-long negatively charged domain. Here, we measure two NFLt variants to identify the impact of the NFLt two main subdomains on its complex interactions and statistical structure. Using synchrotron small-angle x-ray scattering, we find that the uncharged domain of the NFLt induces attractive interactions that cause it to self-assemble into star-like polymer brushes. On the other hand, when the uncharged domain is truncated, the remaining charged N-terminal domains remain isolated in solution with typical polyelectrolyte characteristics. We further discuss how competing long- and short-ranged interactions within the polymer brushes dominate their ensemble structure and, in turn, their implications on previously observed phenomena in NFL native and diseased states.

    Graphic abstract

    Visual schematic of the SAXS measurement results of the Neurofilament-low tail domain IDP (NFLt). NFLts assemble into star-like brushes through their hydrophobic N-terminal domains (marked in blue). In increasing salinity, brush height (h) is initially increased following a decrease while gaining additional tails to their assembly. Isolating the charged sub-domain of the NFLt (marked in red) results in isolated polyelectrolytes

     
    more » « less
  4. Abstract

    Polymer‐grafted nanoparticles (PGNPs) are ideal additives to enhance the mechanical properties and functionality of a polymer matrix and can even potentially serve as single‐component building blocks for highly filled composites if the polymer content is kept low. The major challenge facing such syntheses is that PGNP‐based solids with short polymer brushes often have low mechanical strength and limited processability. It therefore remains difficult to form robust architectures with a variety of 3D macroscopic shapes from single‐component PGNP composites. Forming covalent bonds between cross‐linkable PGNPs is a promising route for overcoming this limitation in processability and functionality, but cross‐linking strategies often require careful blending of components or slow assembly methods. Here, a transformative aging strategy is presented that uses anhydride cross‐linking to enable facile processing of single‐component PGNP solids via thermoforming into arbitrary shapes. The use of lowTgpolymer brushes enables the production of macroscopic composites with>30 vol% homogeneously distributed filler, and aging increases stiffness by 1–2 orders of magnitude. This strategy can be adapted to a variety of polymer and nanofiller compositions and is therefore a potentially versatile approach to synthesize nanocomposites that are functional, mechanically robust, and easily processable.

     
    more » « less
  5. Abstract

    Polymer‐grafted hybrid materials have been ubiquitously employed in various engineering applications. The design of these hybrid materials with superior performances requires a molecularly detailed understanding of the structure and dynamics of the polymer brushes and their interactions with the grafting substrate. Molecular dynamics (MD) simulations are very well suited for the study of these materials which can provide molecular insights into the effects of polymer composition and length, grafting density, substrate composition and curvatures, and nanoconfinement. However, few existing tools are available to generate such systems, which would otherwise reduce the barrier of preparation for such systems to enable high throughput simulations. Here polyGraft, a general, flexible, and easy to use Python program, is introduced for automated generation of molecular structure and topology of polymer grafted hybrid materials for MD simulations purposes, ranging from polymer brushes grafted to hard substrates, to densely grafted bottlebrush polymers. polyGraft is openly accessible on GitHub (https://github.com/nanogchen/polyGraft).

     
    more » « less