skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: External Field Assisted Freeze Casting
Freeze casting under external fields (magnetic, electric, or acoustic) produces porous materials having local, regional, and global microstructural order in specific directions. In freeze casting, porosity is typically formed by the directional solidification of a liquid colloidal suspension. Adding external fields to the process allows for structured nucleation of ice and manipulation of particles during solidification. External control over the distribution of particles is governed by a competition of forces between constitutional supercooling and electromagnetism or acoustic radiation. Here, we review studies that apply external fields to create porous ceramics with different microstructural patterns, gradients, and anisotropic alignments. The resulting materials possess distinct gradient, core–shell, ring, helical, or long-range alignment and enhanced anisotropic mechanical properties.  more » « less
Award ID(s):
1660979
PAR ID:
10089614
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Ceramics
Volume:
2
Issue:
1
ISSN:
2571-6131
Page Range / eLocation ID:
208 to 234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Freeze nano 3D printing is a novel process that seamlessly integrates freeze casting and inkjet printing processes. It can fabricate flexible energy products with both macroscale and microscale features. These multi-scale features enable good mechanical and electrical properties with lightweight structures. However, the quality issues are among the biggest barriers that freeze nano printing, and other 3D printing processes, need to come through. In particular, the droplet solidification behavior is crucial for the product quality. The physical based heat transfer models are computationally inefficient for the online solidification time prediction during the printing process. In this paper, we integrate machine learning (i.e., tensor decomposition) methods and physical models to emulate the tensor responses of droplet solidification time from the physical based models. The tensor responses are factorized with joint tensor decomposition, and represented with low dimensional vectors. We then model these low dimensional vectors with Gaussian process models. We demonstrate the proposed framework for emulating the physical models of freeze nano 3D printing, which can help the future real-time process optimization. 
    more » « less
  2. Gagliardi, Laura (Ed.)
    Colloidal particles with anisotropic geometries and interactions display rich phase behavior and hence have the potential to serve as the basis of functional materials, which can tunably and reversibly self-assemble into different configurations. External fields are one design parameter that can be used to manipulate how systems of colloidal particles assemble with one another. One challenge in designing new materials using anisotropic colloidal particles is understanding how an individual particle’s various anisotropic features, like geometry, affect their overall self-assembly. Here, we present the results of simulation studies that explore the self-assembly of 2D colloidal squares with offset magnetic dipoles in the presence of an external field. Annealing simulations are used to measure the equilibrium-phase behavior of systems of these particles in the ground state, when the magnetic interactions dominate over the thermal forces of the system. We find that the magnetic properties of these systems are strongly influenced by the relative number of squares with opposite “handedness”, or chirality, that are present within the system. Systems of squares that contain equal numbers of either chirality are extremely responsive to the external field; a relatively weak external field is required to magnetize them. In contrast, systems that contain only one chirality of squares are significantly less responsive to the external field; a significantly stronger external field is required to elicit the same magnetic response. Ultimately, the differing macroscopic magnetic properties of these systems are related to their microscopic self- assembly in an external field. Simulation snapshots and ground state phase diagrams illustrate how the absence of opposite chirality squares prevents systems of these particles from leaving an energetically favorable antiparallel configuration in the presence of an external field. When opposite chirality squares are present, these magnetic particles assemble into a head-to-tail configuration, therefore inducing a magnetic state 
    more » « less
  3. Abstract The effect of gravity on directional solidification was investigated in solution‐based freeze casting. A preceramic siloxane‐based polymer was freeze‐cast with a cyclohexene solvent from two different directions: that against the direction of the gravitational force and that in concert with the gravitational force. Because the density of preceramic polymer is higher than the solvent, the segregated polymer creates a denser solution ahead of the freezing front than the underlying solution when the freezing direction is the same as the gravity direction. This results in convective flow in the liquid phase. This convective flow influences constitutional supercooling, which changes not only the pore size of freeze‐cast structure but also the pore morphology from dendritic to cellular pores. 
    more » « less
  4. Inconel 718 is a widely popular aerospace superalloy known for its high-temperature performance and resistance to oxidation, creep, and corrosion. Traditional manufacturing methods, like casting and powder metallurgy, face challenges with intricate shapes that can result in porosity and uniformity issues. On the other hand, Additive Manufacturing (AM) techniques such as Powder Bed Fusion (PBF) and Direct Energy Deposition (DED) can allow the creation of intricate single-part components to reduce weight and maintain structural integrity. However, AM parts often exhibit directional solidification, leading to anisotropic properties and potential crack propagation sites. To address this, post-processing treatments like HIP and heat treatment are necessary. This study explores the effects of the raster and stochastic spot melt scanning strategies on the microstructural and mechanical properties of IN718 parts fabricated using Electron Beam Powder Bed Fusion (EB-PBF). This research demonstrates that raster scanning produces columnar grains with higher mean aspect ratios. Stochastic spot melt scanning facilitates the formation of equiaxed grains, which enhances microstructural refinement and lowers anisotropy. The highest microstructural values were recorded in the raster-produced columnar grain structure. Conversely, the stochastic melt-produced transition from columnar to equiaxed grain structure demonstrated increased hardness with decreasing grain size; however, the hardness of the smallest equiaxed grain structure was slightly less than that of the columnar grain structure. These findings underscore the vital importance of scanning strategies in optimizing the EB-PBF process to enhance material properties. 
    more » « less
  5. Lattice Boltzmann simulations of bijels stabilized by ellipsoidal magnetic particles in external magnetic fields demonstrate the potential of magnetic particles for fabrication of emulsion systems with tunable, anisotropic properties. 
    more » « less