skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unbiased smoothing using particle independent Metropolis–Hastings
We consider the approximation of expectations with respect to the distribution of a latent Markov process given noisy measurements. This is known as the smoothing problem and is often approached with particle and Markov chain Monte Carlo (MCMC) methods. These methods provide consistent but biased estimators when run for a finite time. We propose a simple way of coupling two MCMC chains built using Particle Independent Metropolis-Hastings (PIMH) to produce unbiased smoothing estimators. Unbiased estimators are appealing in the context of parallel computing, and facilitate the construction of confidence intervals. The proposed scheme only requires access to off-the-shelf Particle Filters (PF) and is thus easier to implement than recently proposed unbiased smoothers. The approach is demonstrated on a Lévy-driven stochastic volatility model and a stochastic kinetic model.  more » « less
Award ID(s):
1712872
PAR ID:
10089703
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AISTATS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Performing numerical integration when the integrand itself cannot be evaluated point-wise is a challenging task that arises in statistical analysis, notably in Bayesian inference for models with intractable likelihood functions. Markov chain Monte Carlo (MCMC) algorithms have been proposed for this setting, such as the pseudo-marginal method for latent variable models and the exchange algorithm for a class of undirected graphical models. As with any MCMC algorithm, the resulting estimators are justified asymptotically in the limit of the number of iterations, but exhibit a bias for any fixed number of iterations due to the Markov chains starting outside of stationarity. This "burn-in" bias is known to complicate the use of parallel processors for MCMC computations. We show how to use coupling techniques to generate unbiased estimators in finite time, building on recent advances for generic MCMC algorithms. We establish the theoretical validity of some of these procedures by extending existing results to cover the case of polynomially ergodic Markov chains. The efficiency of the proposed estimators is compared with that of standard MCMC estimators, with theoretical arguments and numerical experiments including state space models and Ising models. 
    more » « less
  2. null (Ed.)
    Markov Chain Monte Carlo (MCMC) methods sample from unnormalized probability distributions and offer guarantees of exact sampling. However, in the continuous case, unfavorable geometry of the target distribution can greatly limit the efficiency of MCMC methods. Augmenting samplers with neural networks can potentially improve their efficiency. Previous neural network-based samplers were trained with objectives that either did not explicitly encourage exploration, or contained a term that encouraged exploration but only for well structured distributions. Here we propose to maximize proposal entropy for adapting the proposal to distributions of any shape. To optimize proposal entropy directly, we devised a neural network MCMC sampler that has a flexible and tractable proposal distribution. Specifically, our network architecture utilizes the gradient of the target distribution for generating proposals. Our model achieved significantly higher efficiency than previous neural network MCMC techniques in a variety of sampling tasks, sometimes by more than an order magnitude. Further, the sampler was demonstrated through the training of a convergent energy-based model of natural images. The adaptive sampler achieved unbiased sampling with significantly higher proposal entropy than a Langevin dynamics sample. The trained sampler also achieved better sample quality. 
    more » « less
  3. This article develops a Markov chain Monte Carlo (MCMC) method for a class of models that encompasses finite and countable mixtures of densities and mixtures of experts with a variable number of mixture components. The method is shown to maximize the expected probability of acceptance for cross-dimensional moves and to minimize the asymptotic variance of sample average estimators under certain restrictions. The method can be represented as a retrospective sampling algorithm with an optimal choice of auxiliary priors and as a reversible jump algorithm with optimal proposal distributions. The method is primarily motivated by and applied to a Bayesian nonparametric model for conditional densities based on mixtures of a variable number of experts. The mixture of experts model outperforms standard parametric and nonparametric alternatives in out of sample performance comparisons in an application to Engel curve estimation. The proposed MCMC algorithm makes estimation of this model practical. 
    more » « less
  4. Many Markov Chain Monte Carlo (MCMC) methods leverage gradient information of the potential function of target distribution to explore sample space efficiently. However, computing gradients can often be computationally expensive for large scale applications, such as those in contemporary machine learning. Stochastic Gradient (SG-)MCMC methods approximate gradients by stochastic ones, commonly via uniformly subsampled data points, and achieve improved computational efficiency, however at the price of introducing sampling error. We propose a non-uniform subsampling scheme to improve the sampling accuracy. The proposed exponentially weighted stochastic gradient (EWSG) is designed so that a non-uniform-SG-MCMC method mimics the statistical behavior of a batch-gradient-MCMC method, and hence the inaccuracy due to SG approximation is reduced. EWSG differs from classical variance reduction (VR) techniques as it focuses on the entire distribution instead of just the variance; nevertheless, its reduced local variance is also proved. EWSG can also be viewed as an extension of the importance sampling idea, successful for stochastic-gradient-based optimizations, to sampling tasks. In our practical implementation of EWSG, the non-uniform subsampling is performed efficiently via a Metropolis-Hastings chain on the data index, which is coupled to the MCMC algorithm. Numerical experiments are provided, not only to demonstrate EWSG's effectiveness, but also to guide hyperparameter choices, and validate our non-asymptotic global error bound despite of approximations in the implementation. Notably, while statistical accuracy is improved, convergence speed can be comparable to the uniform version, which renders EWSG a practical alternative to VR (but EWSG and VR can be combined too). 
    more » « less
  5. This work considers the general task of estimating the sum of a bounded function over the edges of a graph, given neighborhood query access and where access to the entire network is prohibitively expensive. To estimate this sum, prior work proposes Markov chain Monte Carlo (MCMC) methods that use random walks started at some seed vertex and whose equilibrium distribution is the uniform distribution over all edges, eliminating the need to iterate over all edges. Unfortunately, these existing estimators are not scalable to massive real-world graphs. In this paper, we introduce Ripple, an MCMC-based estimator that achieves unprecedented scalability by stratifying the Markov chain state space into ordered strata with a new technique that we denote sequential stratified regenerations. We show that the Ripple estimator is consistent, highly parallelizable, and scales well. We empirically evaluate our method by applying Ripple to the task of estimating connected, induced subgraph counts given some input graph. Therein, we demonstrate that Ripple is accurate and can estimate counts of up to 12-node subgraphs, which is a task at a scale that has been considered unreachable, not only by prior MCMC-based methods but also by other sampling approaches. For instance, in this target application, we present results in which the Markov chain state space is as large as 1043, for which Ripple computes estimates in less than 4 h, on average. 
    more » « less