skip to main content


Title: Assessment of a Double Hole Film Cooling Geometry Using S-PIV and PSP
A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is  = 35°, and the compound angle of the holes is  = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of  = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = -4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced.  more » « less
Award ID(s):
1126371
NSF-PAR ID:
10089708
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME (IGTI) Turbo Expo
Page Range / eLocation ID:
V03BT13A024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction of a turbulent, spatially developing crossflow with a transverse jet possesses several engineering and technological applications such as film cooling of turbine blades, exhaust plumes, thrust vector control, fuel injection, etc. Direct Numerical Simulation (DNS) of a jet in a crossflow under different streamwise pressure gradients (zero and favorable pressure gradient) is carried out. The purpose is to study the physics behind the transport phenomena and coherent structure dynamics in turbulent crossflow jets at different streamwise pressure gradients and low/high-velocity ratios (0.5 and 1). The temperature was regarded as a passive scalar with a molecular Prandtl number of 0.71. The analysis is performed by prescribing accurate turbulent information (instantaneous velocity and temperature) at the inlet of a computational domain. The upward motion of low-momentum fluid created by the “legs” of the counter-rotating vortex pair (CVP) encounters the downward inviscid flow coming from outside of the turbulent boundary layer, inducing a stagnation point and a shear layer. This layer is characterized by high levels of turbulent mixing, turbulence production, turbulent kinetic energy (TKE) and thermal fluctuations. The formation and development of the above-mentioned shear layer are more evident at higher velocity ratios. 
    more » « less
  2. While modern gas turbine engines operate at hot gas path velocities approaching the speed of sound, few facilities have studied the effects that the flow’s compressibility can have on the adiabatic effectiveness. A new facility at the University of Texas at Austin has been developed to investigate these high Mach number effects and how to appropriately scale laboratory film cooling experiments to engine conditions. This study investigates two film cooling hole geometries, a baseline 7-7-7 shaped film cooling hole and a recent design which has been numerically optimized for increased effectiveness. Both holes are tested at mainstream Mach numbers of 0.25 and 0.50 in a flat plate test section. The optimized hole outperforms the effectiveness of the baseline geometry at all blowing ratios tested, matching the trend in the results of previous studies on these geometries. However, there is a marked decrease in film cooling hole performance as the Mach number is increased.

     
    more » « less
  3. The interplay between viscoelasticity and inertia in dilute polymer solutions at high deformation rates can result in inertioelastic instabilities. The nonlinear evolution of these instabilities generates a state of turbulence with significantly different spatiotemporal features compared to Newtonian turbulence, termed elastoinertial turbulence (EIT). We ex- plore EIT by studying the dynamics of a submerged planar jet of a dilute aqueous polymer solution injected into a quiescent tank of water using a combination of schlieren imaging and laser Doppler velocimetry (LDV). We show how fluid elasticity has a nonmonotonic effect on the jet stability depending on its magnitude, creating two distinct regimes in which elastic effects can either destabilize or stabilize the jet. In agreement with linear stability analyses of viscoelastic jets, an inertioelastic shear-layer instability emerges near the edge of the jet for small levels of elasticity, independent of bulk undulations in the fluid column. The growth of this disturbance mode destabilizes the flow, resulting in a turbulence transition at lower Reynolds numbers and closer to the nozzle compared to the conditions required for the transition to turbulence in a Newtonian jet. Increasing the fluid elasticity merges the shear-layer instability into a bulk instability of the jet column. In this regime, elastic tensile stresses generated in the shear layer act as an “elastic membrane” that partially stabilizes the flow, retarding the transition to turbulence to higher levels of inertia and greater distances from the nozzle. In the fully turbulent state far from the nozzle, planar viscoelastic jets exhibit unique spatiotemporal features associated with EIT. The time-averaged angle of jet spreading, an Eulerian measure of the degree of entrainment, and the centerline velocity of the jets both evolve self-similarly with distance from the nozzle. The autocovariance of the schlieren images in the fully turbulent region of the jets shows coherent structures that are elongated in the streamwise direction, consistent with the suppression of streamwise vortices by elastic stresses. These coherent structures give a higher spectral energy to small frequency modes in EIT characterized by LDV measurements of the velocity fluctuations at the jet centerline. Finally, our LDV measurements reveal a frequency spectrum characterized by a −3 power-law exponent, different from the well-known −5/3 power-law exponent characteristic of Newtonian turbulence. 
    more » « less
  4. Recent evidence suggests that film cooling flows with engine realistic mainstream Mach number have declined performance in comparison to those with conventional low-speed laboratory conditions. Consideration and understanding of these effects are fundamental to improving film cooling research. The proposed computational study investigates the film cooling performance of a 7-7-7 shaped film cooling hole with respect to varying mainstream Mach number, with constant Reynolds number. The cases studied include mainstream Mach numbers from 0.15–0.75, with a fixed, engine realistic, hole Reynolds number of Red = 10, 100. Significant results are then evaluated against varying stagnation temperature ratio and blowing ratio. The results showed that at a blowing ratio of 1.75, the adiabatic effectiveness declines significantly with high mainstream Mach number. The decreased performance is due to supersonic flows and shocks in the film cooling hole that disrupt flow in the diffuser section of the hole. These characteristics are observed across all stagnation temperature ratios considered. In addition to these insights, the study discusses the importance of proper thermal scaling and definition of adiabatic effectiveness when operating at high mainstream Mach number. It is demonstrated that the effects of high-speed flow challenge the efficacy of the conventional parameters used to characterize film cooling performance.

     
    more » « less
  5. Abstract

    Accreting supermassive black holes (SMBHs) produce highly magnetized relativistic jets that tend to collimate gradually as they propagate outward. However, recent radio interferometric observations of the 3C 84 galaxy reveal a stunning, cylindrical jet already at several hundred SMBH gravitational radii,r≳ 350rg. We explore how such extreme collimation emerges via a suite of 3D general relativistic magnetohydrodynamic simulations. We consider an SMBH surrounded by a magnetized torus immersed in a constant-density ambient medium that starts at the edge of the SMBH sphere of influence, chosen to be much larger than the SMBH gravitational radius,rB= 103rg. We find that radiatively inefficient accretion flows (e.g., M87) produce winds that collimate the jets into parabolas near the black hole. After the disk winds stop collimating the jets atrrB, they turn conical. Once outsiderB, the jets run into the ambient medium and form backflows that collimate the jets into cylinders some distance beyondrB. Interestingly, for radiatively efficient accretion, as in 3C 84, the radiative cooling saps the energy out of the disk winds; at early times, they cannot efficiently collimate the jets, which skip the initial parabolic collimation stage, start out conical near the SMBH, and turn into cylinders already atr≃ 300rg, as observed in 3C 84. Over time, the jet power remains approximately constant, whereas the mass accretion rate increases; the winds grow in strength and start to collimate the jets, which become quasi-parabolic near the base, and the transition point to a nearly cylindrical jet profile moves outward while remaining insiderB.

     
    more » « less