skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Utilizing Machine Learning to Improve Searches for LIGO Sources
We develop methods to more efficiently differentiate between gravitational wave signals from binary mergers, and detector noise. We make use of the PyCBC detection pipeline to compile larger amounts of data, including signal and noise, into SNR density plots, and we modified them so that they could be easily interpreted by an image classifier. After selecting the parameters that demonstrated features in the density plots, we created a convolutional neural network to search for these patterns. We trained and tested the neural network over increasingly large and varied data sets.  more » « less
Award ID(s):
1757303
PAR ID:
10089821
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
LIGO Laboratory Summer 2018 Undergraduate Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ATLAS sensor onboard the ICESat-2 satellite is a photon-counting lidar (PCL) with a primary mission to map Earth's ice sheets. A secondary goal of the mission is to provide vegetation and terrain elevations, which are essential for calculating the planet's biomass carbon reserves. A drawback of ATLAS is that the sensor does not provide reliable terrain height estimates in dense, high-closure forests because only a few photons reach the ground through the canopy and return to the detector. This low penetration translates into lower accuracy for the resultant terrain model. Tropical forest measurements with ATLAS have an additional problem estimating top of canopy because of frequent atmospheric phenomena such as fog and low clouds that can be misinterpreted as top of the canopy. To alleviate these issues, we propose using a ConvPoint neural network for 3D point clouds and high-density airborne lidar as training data to classify vegetation and terrain returns from ATLAS. The semantic segmentation network provides excellent results and could be used in parallel with the current ATL08 noise filtering algorithms, especially in areas with dense vegetation. We use high-density airborne lidar data acquired along ICESat-2 transects in Central American forests as a ground reference for training the neural network to distinguish between noise photons and photons lying between the terrain and the top of the canopy. Each photon event receives a label (noise or signal) in the test phase, providing automated noise-filtering of the ATL03 data. The terrain and top of canopy elevations are subsequently aggregated in 100 m segments using a series of iterative smoothing filters. We demonstrate improved estimates for both terrain and top of canopy elevations compared to the ATL08 100 m segment estimates. The neural network (NN) noise filtering reliably eliminated outlier top of canopy estimates caused by low clouds, and aggregated root mean square error (RMSE) decreased from 7.7 m for ATL08 to 3.7 m for NN prediction (18 test profiles aggregated). For terrain elevations, RMSE decreased from 5.2 m for ATL08 to 3.3 m for the NN prediction, compared to airborne lidar reference profiles.ICESat-2LidarPoint cloudNoise filtering 
    more » « less
  2. Separating neural signals from noise can improve brain-computer interface performance and stability. However, most algorithms for separating neural action potentials from noise are not suitable for use in real time and have shown mixed effects on decoding performance. With the goal of removing noise that impedes online decoding, we sought to automate the intuition of human spike-sorters to operate in real time with an easily tunable parameter governing the stringency with which spike waveforms are classified. We trained an artificial neural network with one hidden layer on neural waveforms that were hand-labeled as either spikes or noise. The network output was a likelihood metric for each waveform it classified, and we tuned the network’s stringency by varying the minimum likelihood value for a waveform to be considered a spike. Using the network’s labels to exclude noise waveforms, we decoded remembered target location during a memory-guided saccade task from electrode arrays implanted in prefrontal cortex of rhesus macaque monkeys. The network classified waveforms in real time, and its classifications were qualitatively similar to those of a human spike-sorter. Compared with decoding with threshold crossings, in most sessions we improved decoding performance by removing waveforms with low spike likelihood values. Furthermore, decoding with our network’s classifications became more beneficial as time since array implantation increased. Our classifier serves as a feasible preprocessing step, with little risk of harm, that could be applied to both off-line neural data analyses and online decoding. NEW & NOTEWORTHY Although there are many spike-sorting methods that isolate well-defined single units, these methods typically involve human intervention and have inconsistent effects on decoding. We used human classified neural waveforms as training data to create an artificial neural network that could be tuned to separate spikes from noise that impaired decoding. We found that this network operated in real time and was suitable for both off-line data processing and online decoding. 
    more » « less
  3. We present a new algorithm for learning unknown gov- erning equations from trajectory data, using a family of neural net- works. Given samples of solutions x(t) to an unknown dynamical system x ̇ (t) = f (t, x(t)), we approximate the function f using a family of neural networks. We express the equation in integral form and use Euler method to predict the solution at every successive time step using at each iter- ation a different neural network as a prior for f. This procedure yields M-1 time-independent networks, where M is the number of time steps at which x(t) is observed. Finally, we obtain a single function f(t,x(t)) by neural network interpolation. Unlike our earlier work, where we numer- ically computed the derivatives of data, and used them as target in a Lipschitz regularized neural network to approximate f, our new method avoids numerical differentiations, which are unstable in presence of noise. We test the new algorithm on multiple examples in a high-noise setting. We empirically show that generalization and recovery of the governing equation improve by adding a Lipschitz regularization term in our loss function and that this method improves our previous one especially in the high-noise regime, when numerical differentiation provides low qual- ity target data. Finally, we compare our results with other state of the art methods for system identification. 
    more » « less
  4. Multitrack detection architectures provide throughput and areal density gains over the current industry’s standard of single-track detection architectures. One major challenge of multitrack architectures is the complexity of implementing conventional pattern-dependent media noise prediction (PDNP) strategy within the multitrack symbol detector. In this paper we propose a neural network media noise predictor with manageable complexity that iterates with our rotating target (ROTAR) symbol detector in the turbo equalization fashion to predict and cancel the media noise for multitrack detection of asynchronous tracks. We evaluate the proposed detection strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed solution can effectively mitigate the media noise and therefore can replace the prohibitively complex PDNP solution for multitrack detection. 
    more » « less
  5. null (Ed.)
    Abstract Deep neural networks provide state-of-the-art performance for image denoising, where the goal is to recover a near noise-free image from a noisy observation. The underlying principle is that neural networks trained on large data sets have empirically been shown to be able to generate natural images well from a low-dimensional latent representation of the image. Given such a generator network, a noisy image can be denoised by (i) finding the closest image in the range of the generator or by (ii) passing it through an encoder-generator architecture (known as an autoencoder). However, there is little theory to justify this success, let alone to predict the denoising performance as a function of the network parameters. In this paper, we consider the problem of denoising an image from additive Gaussian noise using the two generator-based approaches. In both cases, we assume the image is well described by a deep neural network with ReLU activations functions, mapping a $$k$$-dimensional code to an $$n$$-dimensional image. In the case of the autoencoder, we show that the feedforward network reduces noise energy by a factor of $O(k/n)$. In the case of optimizing over the range of a generative model, we state and analyze a simple gradient algorithm that minimizes a non-convex loss function and provably reduces noise energy by a factor of $O(k/n)$. We also demonstrate in numerical experiments that this denoising performance is, indeed, achieved by generative priors learned from data. 
    more » « less