skip to main content


Title: Interannual relationship between intensity of rainfall intraseasonal oscillation and summer-mean rainfall over Yangtze River Basin in eastern China
Award ID(s):
1643297
NSF-PAR ID:
10089920
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Climate Dynamics
ISSN:
0930-7575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This article examines the diurnal cycle of lake-effect rains over Lake Victoria and of rainfall in the surrounding catchment. The analysis focuses on four months, which represent the two wet seasons (April and November) and the two dry seasons (February and July). Lake-effect rains are strongest in April, weakest in July. In all cases there is a nocturnal rainfall maximum over the lake and a daytime maximum over the catchment, with the transition between rainfall over the lake and over the catchment occurring between 1200 and 1500 LST. During the night the surrounding catchment is mostly dry. Conversely, little to no rain falls over the lake during the afternoon and early evening. In most cases the maximum over the lake occurs at either 0600 or 0900 LST and the maximum over the catchment occurs around 1500 to 1800 LST. The diurnal cycle of Mesoscale Convective Systems (MCSs) parallels that of over-lake rainfall. MCS initiation generally begins over the catchment around 1500 LST and increases at 1800 LST. MCS initiation over the lake begins around 0300 LST and continues until 1200 LST. While some MCSs originate over the highlands to the east of the lake, most originate in situ over the lake. Maximum MCS activity over the lake occurs at 0600 LST and is associated with the systems that initiate in situ . 
    more » « less
  2. This paper discusses the design and implementation of the Hawai‘i Rainfall Analysis and Mapping Application (HI-RAMA) decision support tool. HI-RAMA provides researchers and community stakeholders interactive access to and visualization of hosted historical and near-real-time monthly rainfall maps and aggregated rainfall station observational data for the State of Hawai‘i. The University of Hawai‘i Information Technology Services Cyberinfrastructure team in partnership with members of the Hawai‘i Established Program to Stimulate Competitive Research (EPSCoR) ‘Ike Wai project team developed this application as part of the ‘Ike Wai Gateway to support water sustainability research for the state of Hawai‘i. This tool is designed to provide user-friendly access to information that can reveal the impacts of climate changes related to precipitation so users can make data-driven decisions. 
    more » « less