skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Co-operation of long-term and working memory representations in simultaneous chaining by rhesus monkeys ( Macaca mulatta )
We studied the memory representations that control execution of action sequences by training rhesus monkeys ( Macaca mulatta) to touch sets of five images in a predetermined arbitrary order (simultaneous chaining). In Experiment 1, we found that this training resulted in mental representations of ordinal position rather than learning associative chains, replicating the work of others. We conducted novel analyses of performance on probe tests consisting of two images “derived” from the full five-image lists (i.e., test B, D from list A→B→C→D→E). We found a “first item effect” such that monkeys responded most quickly to images that occurred early in the list in which they had been learned, indicating that monkeys covertly execute known lists mentally until an image on the screen matches the one stored in memory. Monkeys also made an ordinal comparison of the two images presented at test based on long-term memory of positional information, resulting in a “symbolic distance effect.” Experiment 2 indicated that ordinal representations were based on absolute, rather than on relative, positional information because subjects did not link two lists into one large list after linking training, unlike what occurs in transitive inference. We further examined the contents of working memory during list execution in Experiments 3 and 4 and found evidence for a prospective, rather than a retrospective, coding of position in the lists. These results indicate that serial expertise in simultaneous chaining results in robust absolute ordinal coding in long-term memory, with rapidly updating prospective coding of position in working memory during list execution.  more » « less
Award ID(s):
1632477
PAR ID:
10090075
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Quarterly Journal of Experimental Psychology
Volume:
72
Issue:
9
ISSN:
1747-0218
Page Range / eLocation ID:
p. 2208-2224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rotello, C (Ed.)
    Position-specific intrusions of items from prior lists are rare but important phenomena that distinguish broad classes of theory in serial memory. They are uniquely predicted by position coding theories, which assume items on all lists are associated with the same set of codes representing their positions. Activating a position code activates items associated with it in current and prior lists in proportion to their distance from the activated position. Thus, prior list intrusions are most likely to come from the coded position. Alternative “item dependent” theories based on associations between items and contexts built from items have difficulty accounting for the position specificity of prior list intrusions. We tested the position coding account with a position-cued recognition task designed to produce prior list interference. Cuing a position should activate a position code, which should activate items in nearby positions in the current and prior lists. We presented lures from the prior list to test for position-specific activation in response time and error rate; lures from nearby positions should interfere more. We found no evidence for such interference in 10 experiments, falsifying the position coding prediction. We ran two serial recall experiments with the same materials and found position-specific prior list intrusions. These results challenge all theories of serial memory: Position coding theories can explain the prior list intrusions in serial recall and but not the absence of prior list interference in cued recognition. Item dependent theories can explain the absence of prior list interference in cued recognition but cannot explain the occurrence of prior list intrusions in serial recall. 
    more » « less
  2. Abstract Human working memory is a capacity- and duration-limited system in which retention and manipulation of information is subject to metacognitive monitoring and control. At least some nonhuman animals appear to also monitor and control the contents of working memory, but only relatively simple cases where animals monitor or control the presence or absence of single memories have been studied. Here we combine a comparatively complex order memory task with methodology that assesses the capacity to introspect about memory. Monkeys observed sequential presentations of five images, and at test, reported which of two images from the list had appeared first during study. Concurrently, they chose to complete or avoid these tests on a trial-by-trial basis. Monkeys “knew when they knew” the correct response. They were less accurate discriminating images that had appeared close in time to one another during study and were more likely to avoid these difficult tests than they were to avoid easier tests. These results indicate that monkeys can metacognitively monitor relatively complex properties of the contents of working memory, including the quality of representations of temporal relations among images. 
    more » « less
  3. The prefrontal cortex is larger than would be predicted by body size or visual cortex volume in great apes compared with monkeys. Because prefrontal cortex is critical for working memory, we hypothesized that recognition memory tests would engage working memory in orangutans more robustly than in rhesus monkeys. In contrast to working memory, the familiarity response that results from repetition of an image is less cognitively taxing and has been associated with nonfrontal brain regions. Across three experiments, we observed a striking species difference in the control of behavior by these two types of memory. First, we found that recognition memory performance in orangutans was controlled by working memory under conditions in which this memory system plays little role in rhesus monkeys. Second, we found that unlike the case in monkeys, familiarity was not involved in recognition memory performance in orangutans, shown by differences with monkeys across three different measures. Memory in orangutans was not improved by use of novel images, was always impaired by a concurrent cognitive load, and orangutans did not accurately identify images seen minutes ago. These results are surprising and puzzling, but do support the view that prefrontal expansion in great apes favored working memory. At least in orangutans, increased dependence on working memory may come at a cost in terms of the availability of familiarity. 
    more » « less
  4. Despite strong theoretical reasons for assuming that abstract representations organize complex action sequences in terms of subplans (chunks) and sequential positions, we lack methods to directly track such content-independent, hierarchical representations in humans. We applied time-resolved, multivariate decoding analysis to the pattern of rhythmic EEG activity that was registered while participants planned and executed individual elements from pre-learned, structured sequences. Across three experiments, the theta and alpha-band activity coded basic elements and abstract control representations, in particular, the ordinal position of basic elements, but also the identity and position of chunks. Further, a robust representation of higher level, chunk identity information was only found in individuals with above-median working memory capacity, potentially providing a neural-level explanation for working-memory differences in sequential performance. Our results suggest that by decoding oscillatory activity we can track how the cognitive system traverses through the states of a hierarchical control structure. 
    more » « less
  5. Working memory plays an important role in human activities across academic, professional, and social settings. Working memory is defined as the memory extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. The aim of this research is to understand the effect of image captioning with image description on an individual’s working memory. A study was conducted with eight neutral images comprising situations relatable to daily life such that each image could have a positive or negative description associated with the outcome of the situation in the image. The study consisted of three rounds where the first and second round involved two parts and the third round consisted of one part. The image was captioned a total of five times across the entire study. The findings highlighted that only 25% of participants were able to recall the captions which they captioned for an image after a span of 9–15 days; when comparing the recall rate of the captions, 50% of participants were able to recall the image caption from the previous round in the present round; and out of the positive and negative description associated with the image, 65% of participants recalled the former description rather than the latter. 
    more » « less