skip to main content

Title: Co-operation of long-term and working memory representations in simultaneous chaining by rhesus monkeys ( Macaca mulatta )

We studied the memory representations that control execution of action sequences by training rhesus monkeys ( Macaca mulatta) to touch sets of five images in a predetermined arbitrary order (simultaneous chaining). In Experiment 1, we found that this training resulted in mental representations of ordinal position rather than learning associative chains, replicating the work of others. We conducted novel analyses of performance on probe tests consisting of two images “derived” from the full five-image lists (i.e., test B, D from list A→B→C→D→E). We found a “first item effect” such that monkeys responded most quickly to images that occurred early in the list in which they had been learned, indicating that monkeys covertly execute known lists mentally until an image on the screen matches the one stored in memory. Monkeys also made an ordinal comparison of the two images presented at test based on long-term memory of positional information, resulting in a “symbolic distance effect.” Experiment 2 indicated that ordinal representations were based on absolute, rather than on relative, positional information because subjects did not link two lists into one large list after linking training, unlike what occurs in transitive inference. We further examined the contents of working memory during list more » execution in Experiments 3 and 4 and found evidence for a prospective, rather than a retrospective, coding of position in the lists. These results indicate that serial expertise in simultaneous chaining results in robust absolute ordinal coding in long-term memory, with rapidly updating prospective coding of position in working memory during list execution.

« less
Authors:
 ;  ;  
Award ID(s):
1632477
Publication Date:
NSF-PAR ID:
10090075
Journal Name:
Quarterly Journal of Experimental Psychology
Volume:
72
Issue:
9
Page Range or eLocation-ID:
p. 2208-2224
ISSN:
1747-0218
Publisher:
SAGE Publications
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human working memory is a capacity- and duration-limited system in which retention and manipulation of information is subject to metacognitive monitoring and control. At least some nonhuman animals appear to also monitor and control the contents of working memory, but only relatively simple cases where animals monitor or control the presence or absence of single memories have been studied. Here we combine a comparatively complex order memory task with methodology that assesses the capacity to introspect about memory. Monkeys observed sequential presentations of five images, and at test, reported which of two images from the list had appeared first during study. Concurrently, they chose to complete or avoid these tests on a trial-by-trial basis. Monkeys “knew when they knew” the correct response. They were less accurate discriminating images that had appeared close in time to one another during study and were more likely to avoid these difficult tests than they were to avoid easier tests. These results indicate that monkeys can metacognitively monitor relatively complex properties of the contents of working memory, including the quality of representations of temporal relations among images.

  2. Working memory plays an important role in human activities across academic, professional, and social settings. Working memory is defined as the memory extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. The aim of this research is to understand the effect of image captioning with image description on an individual’s working memory. A study was conducted with eight neutral images comprising situations relatable to daily life such that each image could have a positive or negative description associated with the outcome of the situation in the image. The study consisted of three rounds where the first and second round involved two parts and the third round consisted of one part. The image was captioned a total of five times across the entire study. The findings highlighted that only 25% of participants were able to recall the captions which they captioned for an image after a span of 9–15 days; when comparing the recall rate of the captions, 50% of participants were able to recall the image caption from the previous round in the present round; and out of the positive and negative description associated with the image, 65% of participants recalledmore »the former description rather than the latter.« less
  3. The prefrontal cortex is larger than would be predicted by body size or visual cortex volume in great apes compared with monkeys. Because prefrontal cortex is critical for working memory, we hypothesized that recognition memory tests would engage working memory in orangutans more robustly than in rhesus monkeys. In contrast to working memory, the familiarity response that results from repetition of an image is less cognitively taxing and has been associated with nonfrontal brain regions. Across three experiments, we observed a striking species difference in the control of behavior by these two types of memory. First, we found that recognition memory performance in orangutans was controlled by working memory under conditions in which this memory system plays little role in rhesus monkeys. Second, we found that unlike the case in monkeys, familiarity was not involved in recognition memory performance in orangutans, shown by differences with monkeys across three different measures. Memory in orangutans was not improved by use of novel images, was always impaired by a concurrent cognitive load, and orangutans did not accurately identify images seen minutes ago. These results are surprising and puzzling, but do support the view that prefrontal expansion in great apes favored working memory. Atmore »least in orangutans, increased dependence on working memory may come at a cost in terms of the availability of familiarity.« less
  4. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA.« less
  5. For flexible goal-directed behavior, prioritizing and selecting a specific action among multiple candidates is often important. Working memory has long been assumed to play a role in prioritization and planning, while bridging cross-temporal contingencies during action selection. However, studies of working memory have mostly focused on memory for single components of an action plan, such as a rule or a stimulus, rather than management of all of these elements during planning. Therefore, it is not known how post-encoding prioritization and selection operate on the entire profile of representations for prospective actions. Here, we assessed how such control processes unfold over action representations, highlighting the role of conjunctive representations that nonlinearly integrate task-relevant features during maintenance and prioritization of action plans. For each trial, participants prepared two independent rule-based actions simultaneously, then they were retro-cued to select one as their response. Prior to the start of the trial, one rule-based action was randomly assigned to be high priority by cueing that it was more likely to be tested. We found that both full action plans were maintained as conjunctive representations during action preparation, regardless of priority. However, during output selection, the conjunctive representation of the high priority action plan was moremore »enhanced and readily selected as an output. Further, the strength of the high priority conjunctive representation was associated with behavioral interference when the low priority action was tested. Thus, multiple alternate upcoming actions were maintained as integrated representations and served as the target of post-encoding attentional selection mechanisms to prioritize and select an action from within working memory.« less