skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring Diversification In Non-factoid Question Answering
Retrieving short, precise answers to non-factoid queries is an increasingly important task, especially for mobile and voice search. Many of these questions may have multiple or alternative answers. In an environment where answers are presented incrementally, this raises the question of how to generate a diverse ranking to cover these alternatives. Existing search diversification algorithms generate diverse document rankings using explicit or implicit methods based on topical similarity. The goal of this paper is to evaluate the impact of applying these existing document diversification frameworks to the problem of answer diversification to determine if topical diversity is related to answer diversity. Using two common diversification algorithms, xQUAD and PM-2, and three question answering test collections, we show that topic diversification can help to generate more effective rankings but is not consistent across different queries and test collections.  more » « less
Award ID(s):
1715095
PAR ID:
10090130
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval
Page Range / eLocation ID:
223 to 226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ARQMath Lab at CLEF 2020 considers the problem of finding answers to new mathematical questions among posted answers on a community question answering site (Math Stack Exchange). Queries are question postings held out from the test collection, each containing both text and at least one formula. We expect this to be a challenging task, as both math and text may be needed to find relevant answer posts. While several models have been proposed for text question answering, math question answering is in an earlier stage of development. To advance math-aware search and mathematical question answering systems, we will create a standard test collection for researchers to use for benchmarking. ARQMath will also include a formula retrieval sub-task: individual formulas from question posts are used to locate formulas in earlier answer posts, with relevance determined by narrative fields created based on the original question. We will use these narrative fields to explore diverse information needs for formula search (e.g., alternative notation, applications in specific fields or definition). 
    more » « less
  2. While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Google’s responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmark T5 models on GooAQ and observe that: (a) in line with recent work, LM’s strong performance on GooAQ’s short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as ‘how’ and ‘why’ questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types. 
    more » « less
  3. We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model-based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 33.74% of the examples. We further study the impact of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy. Together, we lay the foundation for future studies in retrieval diversity handling complex queries. 
    more » « less
  4. The growth of the Web in recent years has resulted in the development of various online platforms that provide healthcare information services. These platforms contain an enormous amount of information, which could be beneficial for a large number of people. However, navigating through such knowledgebases to answer specific queries of healthcare consumers is a challenging task. A majority of such queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get a short answer that sufficiently answers the query, instead of a long document with only a small amount of useful information. In this paper, we propose a neural network model for ranking documents for question answering in the healthcare domain. The proposed model uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the word-level cross-attention allows the model to identify words that might be most relevant for a query, and the hierarchical attention at sentence and document levels allows it to do effective retrieval on both long and short documents. We also construct a new large-scale healthcare question-answering dataset, which we use to evaluate our model. Experimental evaluation results against several state-of-the-art baselines show that our model outperforms the existing retrieval techniques. 
    more » « less
  5. Considering the widespread use of mobile and voice search, answer passage retrieval for non-factoid questions plays a critical role in modern information retrieval systems. Despite the importance of the task, the community still feels the significant lack of large-scale non-factoid question answering collections with real questions and comprehensive relevance judgments. In this paper, we develop and release a collection of 2,626 open-domain non-factoid questions from a diverse set of categories. The dataset, called ANTIQUE, contains 34k manual relevance annotations. The questions were asked by real users in a community question answering service, i.e., Yahoo! Answers. Relevance judgments for all the answers to each question were collected through crowdsourcing. To facilitate further research, we also include a brief analysis of the data as well as baseline results on both classical and recently developed neural IR models. 
    more » « less