skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the adoption, spread, and sustainability of an informal STEAM learning innovation in schools.
This symposium brings together different studies on the adoption and sustainability of FUSE Studios, an alternative STEAM learning infrastructure. Since its launch, FUSE has been adapted successfully in 136 different school-based implementations operating across 18 different states and two countries (USA and Finland). Yet, despite being tailored to each context by local actors, FUSE has largely managed to preserve the integrity of implementation as educational innovation. Each contribution explores a point in the lifecycle of a FUSE adoption and describes local adaptations of the approach in the US and in Finland. In addition to addressing the critical question of how new educational innovations are adopted and sustained, this symposium provides perspectives on how to balance adaptability to local contexts and the integrity (rather than fidelity) of implementation.  more » « less
Award ID(s):
1657438
PAR ID:
10090132
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 13th International Conference of the Learning Sciences, London, UK.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M; Horn, I (Ed.)
    The problem of sustaining and spreading educational innovations is one that has vexed many researchers. The flipside of this question, equally important, is what leads to the ‘death’ of educational innovations? Here, to shed light on this question, we provide an autopsy on the death of one local implementation of an otherwise successful STEAM exploration program called FUSE. 
    more » « less
  2. Engineering education researchers and practitioners have driven instructional innovation in undergraduate engineering instruction. Much of the research about educational innovation has focused on undergraduate classrooms in large enrollment courses and/or research-intensive institutions. Propagation of innovations across settings, especially those quite unlike the original context, has received less attention in the literature. This includes liberal arts institutions, which collectively educate a large number of undergraduate engineering students in various contexts. Therefore, this study focuses on the implementation of an instructional innovation in a liberal arts institution that started a new engineering program to educate a regional engineering workforce. This qualitative study documented the experiences of one engineering instructor who adopted and adapted a blended learning environment for undergraduate dynamics designed to promote active and collaborative learning in undergraduate engineering courses. We analyzed interviews, documents, artifacts, visual materials, and field notes to examine the propagation of the instructional system in context with cultural features in local institution settings. Our findings show how an engineering instructor orchestrated a culture-aligned adoption and adaptation of an instructional innovation. Using reflective practice, the research participant adapted the implemented innovative instruction to their hands-on institution culture, such as adjusting expectations in content, adapting resources to students’ individual needs, adjusting uncertainty of problem solving, and adapting to a hands-on institution culture. This research highlights the important role of institutional culture in local adaptations of educational innovations, and it provides the community with an expanded way to think about innovation propagation. 
    more » « less
  3. Background: The National Science Foundation (NSF) and other organizations have spent millions of dollars each year supporting well-designed educational innovations that positively impact the undergraduate engineering students who encounter them. However, many of these pedagogical innovations never experience widespread adoption. To further the ability of innovation developers to advance engineering education practice and achieve sustained adoption of their innovations, this paper explores how one community-based model, engineering education guilds, fosters propagation across institutions and individuals. Engineering education guilds seek to work at the forefront of educational innovation by creating networks of instructor change-agents who design and implement a particular innovation in their own context. The guilds of interest are the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN). With these guilds as exemplars, this study’s purpose is (1) to articulate how the approaches of engineering education guilds align with existing literature on supporting sustained adoption of educational innovations and (2) to identify how these approaches can advance the science, technology, engineering and math (STEM) education community’s discussion of propagation practices through the use of the Designing for Sustained Adoption Assessment Instrument (DSAAI). The DSAAI is a conceptual framework based on research in sustained adoption of pedagogical innovations. It has previously been used in the form of a rubric to analyze dissemination and propagation plans of NSF educational grant recipients and was shown to predict the effectiveness of those propagation plans. Results: Through semi-structured interviews with two leaders from each guild, we observed strong alignment between the structures of CRPEE and KEEN and evidence-based sustained adoption characteristics. For example, both guilds identified their intended audience early in their formation, developed and implemented extensive plans for engaging and supporting potential adopters, and accounted for the complexity of the higher education landscape and their innovations in their propagation plans. Conclusions: Our results suggest that guilds could provide another approach to innovation, as their structures can be aligned with evidence-based methods for propagating pedagogical innovations. Additionally, while the DSAAI captures many of the characteristics of a welld-esigned propagation strategy, there are additional components that emerged as successful strategies used by the CPREE and KEEN guild leaders. These strategies, including having mutual accountability among adopters and connecting adoption of innovations to faculty reward structures in the form of recognition and funding should be considered as educational innovators work to encourage adoption of their innovations. 
    more » « less
  4. This is a contribution to a Symposium This symposium will provide opportunities for discussion about how Artificial Intelligence can support ambitious learning practices in CSCL. To the extent that CSCL can be a lever for educational equitable educational change, AI needs to be able to support the kinds of practices that afford agency to students and teachers. However, AI also brings to the fore the need to consider equity and ethics. This interactive session will provide opportunities to discuss these issues in the context of the examples presented here. Our contribution is focused on two participatory design studies we conducted with 14 teachers to understand the kinds of automatic feedback they thought would support their students’ science explanation writing as well as how they would like summaries of information from students’ writing presented in a teacher’s dashboard. We also discuss how we developed our system, PyrEval, for automated writing support based on historical data and scoring from manual coding rubrics. 
    more » « less
  5. null (Ed.)
    This symposium will focus on five projects’ professional development efforts to enhance educators’ understanding and use of the Next Generation Science Standards (NGSS). Involving educators from preschool to middle school levels in diverse contexts, each project has worked in this problem space in different ways. Of central importance to all the projects is how the NGSS necessitate productive classroom discourse, but the projects differ on how to support educators to achieve “rich science talk.” For example, an “assessment for learning” lens guides one group’s work, while recognizing language and argument as epistemic tools is the driving conceptual framework for another. In this symposium, project leaders discuss the decisions and dilemmas of, and the lessons learned from, their work. This highly interactive session includes brief introductions from each project followed by time for interaction with the projects’ researchers and materials. Projects will bring materials such as scaffolds for collaborative instructional planning, a formative classroom observation tool to support teachers’ use of productive classroom discourse, and examples of instructional units with 7 curricular features designed to support the vision of the NGSS. The session will culminate with time for crosstalk and discussion. 
    more » « less