Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for informed and proactive water resource management. Although S2S precipitation forecasts have been evaluated, no systematic decomposition of the skill, Nash–Sutcliffe efficiency (NSE) coefficient, has been analyzed toward understanding the forecast accuracy. We decompose the NSE of S2S precipitation forecast into its three components—correlation, conditional bias, and unconditional bias—by four seasons, three lead times (1–12, 1–22, and 1–32 days), and three models, European Centre of Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (CFS) model, and Environment and Climate Change Canada (ECCC), over the conterminous United States (CONUS). Application of a dry threshold, removal of grid cells with seasonal climatological precipitation means below 0.01 in. per day, is important as the NSE and correlations are lower across all seasons after masking areas with low precipitation values. Further, a west-to-east gradient in S2S forecast skill exists, and forecast skill was better during the winter months and for areas closer to the coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, mainly for the forecasts issued during the fall and winter months. However, ECCC and NCEP CFS performed better for the forecast issued during the spring months and for areas further from the coast. Postprocessing using simple model output statistics could reduce both unconditional and conditional biases to zero, thereby offering better skill for regimes with high correlation. Our decomposition results show that efforts should focus on improving model parameterization and initialization schemes for climate regimes with low correlation.
We describe a new effort to enhance climate forecast relevance and usability through the development of a system for evaluating and displaying real‐time subseasonal to seasonal (S2S) climate forecasts on a watershed scale. Water managers may not use climate forecasts to their full potential due to perceived low skill, mismatched spatial and temporal resolutions, or lack of knowledge or tools to ingest data. Most forecasts are disseminated as large‐domain maps or gridded datasets and may be systematically biased relative to watershed climatologies. Forecasts presented on a watershed scale allow water managers to view forecasts for their specific basins, thereby increasing the usability and relevance of climate forecasts. This paper describes the formulation of S2S climate forecast products based on the Climate Forecast System version 2 (CFSv2) and the North American Multi‐Model Ensemble (NMME). Forecast products include bi‐weekly CFSv2 forecasts, and monthly and seasonal NMME forecasts. Precipitation and temperature forecasts are aggregated spatially to a United States Geological Survey (USGS) hydrologic unit code 4 (HUC‐4) watershed scale. Forecast verification reveals appreciable skill in the first two bi‐weekly periods (Weeks 1–2 and 2–3) from CFSv2, and usable skill in NMME Month 1 forecast with varying skills at longer lead times dependent on the season. Application of a bias‐correction technique (quantile mapping) eliminates forecast bias in the CFSv2 reforecasts, without adding significantly to correlation skill.
more » « less- PAR ID:
- 10090421
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- JAWRA Journal of the American Water Resources Association
- Volume:
- 55
- Issue:
- 4
- ISSN:
- 1093-474X
- Page Range / eLocation ID:
- p. 1024-1037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Extreme precipitation events can cause significant impacts to life, property, and the economy. As forecasting capabilities increase, the subseasonal-to-seasonal (S2S) time scale provides an opportunity for advanced notice of impactful precipitation events. Building on a previous workshop, the Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted a second workshop virtually in the fall of 2021. The workshop engaged a variety of practitioners, including emergency managers, water managers, tribal environmental professionals, and National Weather Service meteorologists. While the team’s first workshop examined the “big picture” in how practitioners define “extreme precipitation” and how precipitation events impact their jobs, this workshop focused on details of S2S precipitation products, both current and potential future decision tools. Discussions and activities in this workshop assessed how practitioners use existing forecast products to make decisions about extreme precipitation, how they interpret newly developed educational tools from the PRES2iP team, and how they manage uncertainty in forecasts. By collaborating with practitioners, the PRES2iP team plans to use knowledge gained going forward to create more educational and operational tools related to S2S extreme precipitation event prediction, helping practitioners to make more informed decisions.
-
null (Ed.)Abstract In this study, seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), are compared with station observations to assess their usefulness in producing accurate buildup index (BUI) forecasts for the fire season in Interior Alaska. These comparisons indicate that the CFSv2 June–July–August (JJA) climatology (1994–2017) produces negatively biased BUI forecasts because of negative temperature and positive precipitation biases. With quantile mapping (QM) correction, the temperature and precipitation forecasts better match the observations. The long-term JJA mean BUI improves from 12 to 42 when computed using the QM-corrected forecasts. Further postprocessing of the QM-corrected BUI forecasts using the quartile classification method shows anomalously high values for the 2004 fire season, which was the worst on record in terms of the area burned by wildfires. These results suggest that the QM-corrected CFSv2 forecasts can be used to predict extreme fire events. An assessment of the classified BUI ensemble members at the subseasonal scale shows that persistently occurring BUI forecasts exceeding 150 in the cumulative drought season can be used as an indicator that extreme fire events will occur during the upcoming season. This study demonstrates the ability of QM-corrected CFSv2 forecasts to predict the potential fire season in advance. This information could, therefore, assist fire managers in resource allocation and disaster response preparedness.more » « less
-
Abstract Extreme precipitation over a two-week period can cause significant impacts to life and property. Trustworthy and easy-to-understand forecasts of these extreme periods on the subseasonal-to-seasonal timeframe may provide additional time for planning. The Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted three workshops over six years to engage with stakeholders to learn what is needed for decision-making for subseasonal precipitation. In this study experimental subseasonal to seasonal (S2S) forecast products were designed, using knowledge gained from previous stakeholder workshops, and shown to decision-makers to evaluate the products for two 14-day extreme precipitation period scenarios. Our stakeholders preferred a combination of products that covered the spatial extent, regional daily values, with associated uncertainty, and text narratives with anticipated impacts for planning within the S2S timeframe. When targeting longer extremes, having information regarding timing of expected impacts was seen as crucial for planning. We found that there is increased uncertainty tolerance with stakeholders when using products at longer lead times that typical skill metrics, such as critical success index or anomaly correlation coefficient, do not capture. Therefore, the use of object-oriented verification, that allows for more flexibility in spatial uncertainty, might be beneficial for evaluating S2S forecasts. These results help to create a foundation for design, verification, and implementation of future operational forecast products with longer lead times, while also providing an example for future workshops that engage both researchers and decision-makers.
-
Abstract Ecosystems around the globe are experiencing changes in both the magnitude and fluctuations of environmental conditions due to land use and climate change. In response, ecologists are increasingly using near‐term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near‐term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost‐prohibitive or impossible for forecasting ecological variables that lack high‐frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1‐ to 35‐day‐ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1‐day‐ahead forecast root mean square error (RMSE) of 0.81°C, mean 7‐day RMSE of 1.15°C, and mean 35‐day RMSE of 1.94°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1‐ to 7‐day‐ahead horizons, but weekly data assimilation resulted in the most skillful forecasts at 8‐ to 35‐day‐ahead horizons. Within a year, forecasts with weekly data assimilation consistently outperformed forecasts with daily data assimilation after the 8‐day forecast horizon during mixed spring/autumn periods and 5‐ to 14‐day‐ahead horizons during the summer‐stratified period, depending on depth. Our results suggest that lower frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high‐frequency sensor data.