Prolonged effect of the stratospheric pathway in linking Barents–Kara Sea sea ice variability to the midlatitude circulation in a simplified model
- Award ID(s):
- 1815138
- PAR ID:
- 10090454
- Date Published:
- Journal Name:
- Climate Dynamics
- Volume:
- 50
- Issue:
- 1-2
- ISSN:
- 0930-7575
- Page Range / eLocation ID:
- 527 to 539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The Mediterranean Sea can be viewed as a “barometer” of the North Atlantic Ocean, because its sea level responds to oceanic-gyre-scale changes in atmospheric pressure and wind forcing, related to the North Atlantic Oscillation (NAO). The climate of the North Atlantic is influenced by the Atlantic meridional overturning circulation (AMOC) as it transports heat from the South Atlantic toward the subpolar North Atlantic. This study reports on a teleconnection between the AMOC transport measured at 26.5°N and the Mediterranean Sea level during 2004–17: a reduced/increased AMOC transport is associated with a higher/lower sea level in the Mediterranean. Processes responsible for this teleconnection are analyzed in detail using available satellite and in situ observations and an atmospheric reanalysis. First, it is shown that on monthly to interannual time scales the AMOC and sea level are both driven by similar NAO-like atmospheric circulation patterns. During a positive/negative NAO state, stronger/weaker trade winds (i) drive northward/southward anomalies of Ekman transport across 26.5°N that directly affect the AMOC and (ii) are associated with westward/eastward winds over the Strait of Gibraltar that force water to flow out of/into the Mediterranean Sea and thus change its average sea level. Second, it is demonstrated that interannual changes in the AMOC transport can lead to thermosteric sea level anomalies near the North Atlantic eastern boundary. These anomalies can (i) reach the Strait of Gibraltar and cause sea level changes in the Mediterranean Sea and (ii) represent a mechanism for negative feedback on the AMOC.more » « less
-
Abstract The subpolar North Atlantic is a site of significant carbon dioxide, oxygen, and heat exchange with the atmosphere. This exchange, which regulates transient climate change and prevents large‐scale hypoxia throughout the North Atlantic, is thought to be mediated by vertical mixing in the ocean's surface mixed layer. Here we present observational evidence that waters deeper than the conventionally defined mixed layer are affected directly by atmospheric forcing in this region. When northerly winds blow along the Irminger Sea's western boundary current, the Ekman response pushes denser water over lighter water, potentially triggering slantwise convection. We estimate that this down‐front wind forcing is four times stronger than air–sea heat flux buoyancy forcing and can mix waters to several times the conventionally defined mixed layer depth. Slantwise convection is not included in most large‐scale ocean models, which likely limits their ability to accurately represent subpolar water mass transformations and deep ocean ventilation.more » « less
-
Abstract High latitudes, including the Bering Sea, are experiencing unprecedented rates of change. Long-term Bering Sea warming trends have been identified, and marine heatwaves (MHWs), event-scale elevated sea surface temperature (SST) extremes, have also increased in frequency and longevity in recent years. Recent work has shown that variability in air–sea coupling plays a dominant role in driving Bering Sea upper-ocean thermal variability and that surface forcing has driven an increase in the occurrence of positive ocean temperature anomalies since 2010. In this work, we characterize the drivers of the anomalous surface air–sea heat fluxes in the Bering Sea over the period 2010–22 using ERA5 fields. We show that the surface turbulent heat flux dominates the net surface heat flux variability from September to April and is primarily a result of near-surface air temperature and specific humidity anomalies. The airmass anomalies that account for the majority of the turbulent heat flux variability are a function of wind direction, with southerly (northerly) wind advecting anomalously warm (cool), moist (dry) air over the Bering Sea, resulting in positive (negative) surface turbulent flux anomalies. During the remaining months of the year, anomalies in the surface radiative fluxes account for the majority of the net surface heat flux variability and are a result of anomalous cloud coverage, anomalous lower-tropospheric virtual temperature, and sea ice coverage variability. Our results indicate that atmospheric variability drives much of the Bering Sea upper-ocean temperature variability through the mediation of the surface heat fluxes during the analysis period. Significance StatementA long-term ocean warming trend and a recent increase in marine heatwaves in the Bering Sea have been identified. Previous work showed that anomalies in the exchange of heat between the ocean and the atmosphere were the primary driver of Bering Sea temperature variability, but the processes responsible for the heat exchange anomalies were unknown. In this work, we show that the atmosphere is the primary driver of anomalies in the Bering Sea air–sea heat exchange and therefore plays an important role in altering the thermal state of the Bering Sea. Our results highlight the importance of understanding more about how the ocean and the atmosphere interact at high latitudes and how this relationship will be affected by future climate change.more » « less
An official website of the United States government

