ABSTRACT If is a list assignment of colors to each vertex of an ‐vertex graph , then anequitable‐coloringof is a proper coloring of vertices of from their lists such that no color is used more than times. A graph isequitably‐choosableif it has an equitable ‐coloring for every ‐list assignment . In 2003, Kostochka, Pelsmajer, and West (KPW) conjectured that an analog of the famous Hajnal–Szemerédi Theorem on equitable coloring holds for equitable list coloring, namely, that for each positive integer every graph with maximum degree at most is equitably ‐choosable. The main result of this paper is that for each and each planar graph , a stronger statement holds: if the maximum degree of is at most , then is equitably ‐choosable. In fact, we prove the result for a broader class of graphs—the class of the graphs in which each bipartite subgraph with has at most edges. Together with some known results, this implies that the KPW Conjecture holds for all graphs in , in particular, for all planar graphs. We also introduce the new stronger notion ofstrongly equitable(SE, for short) list coloring and prove all bounds for this parameter. An advantage of this is that if a graph is SE ‐choosable, then it is both equitably ‐choosable and equitably ‐colorable, while neither of being equitably ‐choosable and equitably ‐colorable implies the other.
more »
« less
The Rado path decomposition theorem
Fix an r-coloring of the pairs of natural numbers. An ordered list of distinct integers, is a monochromatic path for color k, if every two adjacent integers in the list have the same color. A path decomposition for the coloring is a collection of r paths P0,P1,...,Pr−1 such that Pj is a path of color j and every integer appears on exactly one path. Improving on an unpublished result of Erdos, Rado published a theorem which implies: Every r- coloring of the pairs of natural numbers has a path decomposition. We analyse the effective content of this theorem.
more »
« less
- Award ID(s):
- 1762648
- PAR ID:
- 10090722
- Date Published:
- Journal Name:
- Israel journal of mathematics
- ISSN:
- 0021-2172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Meka, Raghu (Ed.)We initiate the study of approximately counting the number of list packings of a graph. The analogous problem for usual vertex coloring and list coloring has attracted substantial attention. For list packing the setup is similar, but we seek a full decomposition of the lists of colors into pairwise-disjoint proper list colorings. The existence of a list packing implies the existence of a list coloring, but the converse is false. Recent works on list packing have focused on existence or extremal results of on the number of list packings, but here we turn to the algorithmic aspects of counting and sampling. In graphs of maximum degree Δ and when the number of colors is at least Ω(Δ²), we give a fully polynomial-time randomized approximation scheme (FPRAS) based on rapid mixing of a natural Markov chain (the Glauber dynamics) which we analyze with the path coupling technique. Some motivation for our work is the investigation of an atypical spin system, one where the number of spins for each vertex is much larger than the graph degree.more » « less
-
We prove that for all graphs with at most $(3.75-o(1))n$ edges there exists a 2-coloring of the edges such that every monochromatic path has order less than $$n$$. This was previously known to be true for graphs with at most $2.5n-7.5$ edges. We also improve on the best-known lower bounds in the $$r$$-color case.more » « less
-
Abstract For a plane near‐triangulation with the outer face bounded by a cycle , let denote the function that to each 4‐coloring of assigns the number of ways extends to a 4‐coloring of . The Block‐count reducibility argument (which has been developed in connection with attempted proofs of the Four Color Theorem) is equivalent to the statement that the function belongs to a certain cone in the space of all functions from 4‐colorings of to real numbers. We investigate the properties of this cone for , formulate a conjecture strengthening the Four Color Theorem, and present evidence supporting this conjecture.more » « less
-
Abstract Recently, Dvořák, Norin, and Postle introduced flexibility as an extension of list coloring on graphs (J Graph Theory 92(3):191–206, 2019, https://doi.org/10.1002/jgt.22447 ). In this new setting, each vertex v in some subset of V ( G ) has a request for a certain color r ( v ) in its list of colors L ( v ). The goal is to find an L coloring satisfying many, but not necessarily all, of the requests. The main studied question is whether there exists a universal constant $$\varepsilon >0$$ ε > 0 such that any graph G in some graph class $$\mathscr {C}$$ C satisfies at least $$\varepsilon$$ ε proportion of the requests. More formally, for $$k > 0$$ k > 0 the goal is to prove that for any graph $$G \in \mathscr {C}$$ G ∈ C on vertex set V , with any list assignment L of size k for each vertex, and for every $$R \subseteq V$$ R ⊆ V and a request vector $$(r(v): v\in R, ~r(v) \in L(v))$$ ( r ( v ) : v ∈ R , r ( v ) ∈ L ( v ) ) , there exists an L -coloring of G satisfying at least $$\varepsilon |R|$$ ε | R | requests. If this is true, then $$\mathscr {C}$$ C is called $$\varepsilon$$ ε - flexible for lists of size k . Choi, Clemen, Ferrara, Horn, Ma, and Masařík (Discrete Appl Math 306:20–132, 2022, https://doi.org/10.1016/j.dam.2021.09.021 ) introduced the notion of weak flexibility , where $$R = V$$ R = V . We further develop this direction by introducing a tool to handle weak flexibility. We demonstrate this new tool by showing that for every positive integer b there exists $$\varepsilon (b)>0$$ ε ( b ) > 0 so that the class of planar graphs without $$K_4, C_5 , C_6 , C_7, B_b$$ K 4 , C 5 , C 6 , C 7 , B b is weakly $$\varepsilon (b)$$ ε ( b ) -flexible for lists of size 4 (here $$K_n$$ K n , $$C_n$$ C n and $$B_n$$ B n are the complete graph, a cycle, and a book on n vertices, respectively). We also show that the class of planar graphs without $$K_4, C_5 , C_6 , C_7, B_5$$ K 4 , C 5 , C 6 , C 7 , B 5 is $$\varepsilon$$ ε -flexible for lists of size 4. The results are tight as these graph classes are not even 3-colorable.more » « less
An official website of the United States government

